Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Juno Mukai"'
Publikováno v:
Topology and its Applications. 243:135-145
We determine the group structure of the 23-rd homotopy group π 23 ( G 2 ) , where G 2 is the exceptional Lie group of rank 2, which hasn't been determined for 50 years.
Autor:
Juno Mukai, Toshiyuki Miyauchi
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 23:319-387
We determine the 2-primary components of the 32-stem homotopy groups of spheres. The method is based on the classical one including the Toda’s composition methods.
Autor:
Marek Golasiński, Juno Mukai
This is a monograph that details the use of Siegel's method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the p
Autor:
Toshiyuki Miyauchi, Juno Mukai
Publikováno v:
Kyushu Journal of Mathematics. 59:101-116
Let Pn be the real n-dimensional projective space. We determine the group structure of the self-homotopy set of the double suspension of Pn where n is 3, 4, 5 and 6 using the ideas and methods of the second author (The suspension order of the real ev
Autor:
Arkadiy Skopenkov, Juno Mukai
Publikováno v:
Kyushu Journal of Mathematics. 58:203-209
Autor:
Juno Mukai, Marek Golasiński
Publikováno v:
Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces ISBN: 9783319115160
This chapter published in [20] takes up the systematic study of the Gottlieb groups \(G_{n+k}(\mathbb{S}^{n})\) of spheres for k ≤ 13 by means of the classical homotopy theory methods. We fully determine the groups \(G_{n+k}(\mathbb{S}^{n})\) for k
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a8a9d857a84d5b5861f080f7e427434e
https://doi.org/10.1007/978-3-319-11517-7_1
https://doi.org/10.1007/978-3-319-11517-7_1
Autor:
Juno Mukai, Marek Golasiński
Publikováno v:
Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces ISBN: 9783319115160
This chapter takes up the systematic study of the Gottlieb groups \(G_{n+k}(M(A,n))\) of Moore spaces M(A, n) for an abelian group A and n ≥ 2. The groups \(G_{n+k}(M(A,n))\) and \(G_{n+k}(M(A \oplus \mathbb{Z},n))\) are determined for k = 0, 1, 2,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2f077d1f8f19903176ee1075a0924954
https://doi.org/10.1007/978-3-319-11517-7_3
https://doi.org/10.1007/978-3-319-11517-7_3
Autor:
Juno Mukai, Marek Golasiński
Publikováno v:
Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces ISBN: 9783319115160
By the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups, we determine in this chapter some Gottlieb groups of projective spaces or give the lower bounds of their orders. Furthermore, making use of the pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::595358987bef8de37b0d6f9f3e9b59e7
https://doi.org/10.1007/978-3-319-11517-7_2
https://doi.org/10.1007/978-3-319-11517-7_2
Autor:
Juno Mukai
Publikováno v:
Kyushu Journal of Mathematics. 55:63-73