Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Jung's theorem"'
Publikováno v:
Pro Mathematica. 29(58):117-127
We give a short and elementary proof of Jung’s theorem, which states that for a field K of characteristic zero the automorphisms of K[x, y] are generated by elementary automorphisms and linear automorphisms.
Presentaremos una prueba corta y el
Presentaremos una prueba corta y el
Autor:
Ben Berckmoes
Publikováno v:
Journal of Inequalities and Applications, Vol 2016, Iss 1, Pp 1-15 (2016)
Abstract We quantify the Prokhorov theorem by establishing an explicit formula for the Hausdorff measure of noncompactness (HMNC) for the parameterized Prokhorov metric on the set of Borel probability measures on a Polish space. Furthermore, we quant
Externí odkaz:
https://doaj.org/article/841e8680bb3c46fc80a3209a30891de8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Álvarez Balanya, Sergio
Publikováno v:
Biblos-e Archivo. Repositorio Institucional de la UAM
instname
instname
Background subtraction has become a key step in several computer vision algorithms. There are plenty of studies proposing different and varied approaches. However, the problem of background subtraction is not yet fully addressed. One reason might be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d27a49954b772f29d4c051d99efb1c6f
https://hdl.handle.net/10486/688255
https://hdl.handle.net/10486/688255
Publikováno v:
Journal of Mathematical Inequalities. :807-817
Autor:
Arseniy Akopyan
Publikováno v:
Discrete & Computational Geometry. 49:478-484
We consider combinatorial generalizations of Jung’s theorem on covering a set by a ball. We prove the “fractional” and “colorful” versions of the theorem.
Autor:
Horst Martini, Margarita Spirova
Publikováno v:
advg. 13:41-50
In 1914, Lebesgue posed his famous universal cover problem for the Euclidean plane which is still unsolved. We present the first explicit investigation of this problem for arbitrary normed planes. A convex body K in a finite dimensional real Banach s
Autor:
Sheng-Jun Gong, Jie-Tai Yu
Publikováno v:
Algebra Colloquium. 17:43-46
Let K be a field of characteristic zero. Based on the degree estimate of Makar-Limanov and Yu, we prove that the preimage of a coordinate under an injective endomorphism of K〈x, y〉 is also a coordinate. As by-products, we give new proofs of the f
Autor:
Vladimir Boltyanski, Horst Martini
Publikováno v:
advg. 6:645-650
We give generalizations of Jung's theorem for the case when there are two Minkowski metrics in ℝ n one of which is used to define the diameter of a set M ∈ ℝ n , and the other to determine the radius of the Minkowski ball containing M.
Autor:
V. Nguen-Khac, K. Nguen-Van
Publikováno v:
Mathematical Notes. 80:224-232
A complete characterization of the extremal subsets of Hilbert spaces, which is an infinite-dimensional generalization of the classical Jung theorem, is given. The behavior of the set of points near the Chebyshev sphere of such a subset with respect