Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Jun-Xing Cao"'
Publikováno v:
Artificial Intelligence in Geosciences, Vol 2, Iss , Pp 107-114 (2021)
A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields. The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decompositio
Externí odkaz:
https://doaj.org/article/cc8350d01ca04a6da82347b6260ab983
Publikováno v:
Petroleum Science (KeAi Communications Co.); Jun2024, Vol. 21 Issue 3, p1649-1659, 11p
Autor:
Jian-Yong Xie, Yan-Ping Fang, Xing-Hua Wu, Jian'er Zhao, Jun-Cheng Dai, Jun-Xing Cao, Ji-Xin Deng
Publikováno v:
Petroleum Science (KeAi Communications Co.); Apr2024, Vol. 21 Issue 2, p855-865, 11p
Publikováno v:
Geophysical Journal International. 233:1950-1959
SUMMARYSeismic attenuation has a considerable impact on resolution reduction and the increase in the dominant frequency period of seismic data. The absorption coefficient estimates, which measure inelastic attenuation, provide a deep understanding of
Autor:
Jian-Yong Xie, Jun-Jie Zhang, Wei Xiang, Yan-Ping Fang, Ya-Juan Xue, Jun-Xing Cao, Ren-Fei Tian
Publikováno v:
Petroleum Science. 19:2683-2694
Publikováno v:
GEOPHYSICS. 87:V261-V277
The quality factor Q is generally used to describe seismic attenuation that leads to amplitude decay (AD) and wavelet distortion. Time-frequency transforms are commonly used to measure quality factor Q on surface seismic data. These methods capture f
Autor:
Ya-Juan Xue, Xing-Jian Wang, Jun-Xing Cao, Hao-Kun Du, Jian-Yong Xie, Jia-Chun You, Xu-Dong Jiang, Jia Yang
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 60:1-11
Publikováno v:
AIP Conference Proceedings.
In the study of shale oil and gas reservoirs prediction, the total organic carbon content (TOC) is one of the important indexes to evaluate its hydrocarbon generation capability. Therefore, an accurate method for predicting TOC is particularly signif
Publikováno v:
Chinese Journal of Geophysics. 54:864-869
This paper presents a dual-parameter regularization method with a term that has a second order regularization operator. The optimal value of the regularization parameter is determined by applying the L-curve criterion, the discrepancy principle and g