Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Jun Byungheup"'
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 967-985 (2018)
Dedekind sums were introduced by Dedekind to study the transformation properties of Dedekind η function under the action of SL2(ℤ). In this paper, we study properties of generalized Dedekind sums si,j(p, q). We prove an asymptotic expansion of a f
Externí odkaz:
https://doaj.org/article/d1b3bc913cea45d2b6799104d456eb04
Publikováno v:
In Advances in Mathematics 4 June 2022 401
Hickerson made an explicit formula for Dedekind sums $s(p,q)$ in terms of the continued fraction of $p/q$. We develop analogous formula for generalized Dedekind sums $s_{i,j}(p,q)$ defined in association with the $x^{i}y^{j}$-coefficient of the Todd
Externí odkaz:
http://arxiv.org/abs/1608.02472
We consider generalized Dedekind sums in dimension $n$, for fixed $n$-tuple of natural numbers, defined as sum of products of values of periodic Bernoulli functions. This includes the higher dimensional Dedekind sums of Zagier and Apostol-Carlitz' ge
Externí odkaz:
http://arxiv.org/abs/1406.3563
Autor:
Jun, Byungheup, Lee, Jungyun
For the generalized Dedekind sums s_{ij}(p,q) defined in association with the x^{i}y^{j}-coefficient of the Todd power series of the lattice cone in R^2 generated by (1,0) and (q,p), we associate an exponential sum. We obtain this exponential sum usi
Externí odkaz:
http://arxiv.org/abs/1303.2331
Autor:
Jun, Byungheup, Lee, Jungyun
We compute the special values at nonpositive integers of the partial zeta function of an ideal of a real quadratic field applying an asymptotic version of Euler-Maclaurin formula to the lattice cone associated to the ideal considered. The Euler-Macla
Externí odkaz:
http://arxiv.org/abs/1209.4958
Autor:
Jun, Byungheup, Lee, Jungyun
We obtain lower bound of caliber number of real quadratic field $K=\FQ(\sqrt{d})$ using splitting primes in $K$. We find all real quadratic fields of caliber number 1 and find all real quadratic fields of caliber number 2 if $d$ is not 5 modulo 8. In
Externí odkaz:
http://arxiv.org/abs/1111.6718
Autor:
Jun, Byungheup, Lee, Jungyun
For a family of real quadratic fields $\{K_n=\FQ(\sqrt{f(n)})\}_{n\in \FN}$, a Dirichlet character $\chi$ modulo $q$ and prescribed ideals $\{\fb_n\subset K_n\}$, we investigate the linear behaviour of the special value of partial Hecke's L-function
Externí odkaz:
http://arxiv.org/abs/1111.6716
Autor:
Jun, Byungheup
In this article, we calculate the period determinant of an irrgular singular connection d+dy on the legendre curve U: y^2 =x(x-1)(x- lambda). We calculate its de Rham cohomology and the cycles in the homology of the dual connection and describe the p
Externí odkaz:
http://arxiv.org/abs/math/0302149
Publikováno v:
In Journal of Number Theory January 2017 170:191-210