Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Jun‐Qi Hu"'
Publikováno v:
Fractal and Fractional, Vol 5, Iss 4, p 226 (2021)
In the present paper, the Karhunen–Loève eigenvalues for a sub-fractional Brownian motion are considered. Rigorous large n asymptotics for those eigenvalues are shown, based on the functional analysis method. By virtue of these asymptotics, along
Externí odkaz:
https://doaj.org/article/4845da6f827d4f90840265805668e05e
Publikováno v:
World Journal of Clinical Cases. 10:3490-3495
Autor:
Miao‐Ling Chen, Yi‐Zhao Chen, Ling‐Zhi Wang, Jing‐Ru Cao, Xing‐Wen Huang, Yue‐Zhu Li, Rui‐Bin Wang, Yi‐Dong Liu, Jun‐Qi Hu, Song‐Yi Liao, Yong‐Gang Min
Publikováno v:
ChemNanoMat. 9
Autor:
Wei‐Xiang Cheng, Yi‐Zhao Chen, Song‐Yi Liao, Jun‐Qi Hu, Cun‐Sheng Liu, Shuai‐Fu Cui, Xing‐Wen Huang, Yidong Liu, Yonggang Min
Publikováno v:
ChemElectroChem. 9
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Calcolo
Calcolo, 2023, 60 (1), pp.article n°15. ⟨10.1007/s10092-023-00504-w⟩
Calcolo, 2023, 60 (1), pp.article n°15. ⟨10.1007/s10092-023-00504-w⟩
International audience; Using Fourier series representations of functions on axisymmetric domains, we find weighted Sobolev norms of the Fourier coefficients of a function that yield norms equivalent to the standard Sobolev norms of the function. Thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36370dcd9329caec108a0ca62378e84d
https://hal.archives-ouvertes.fr/hal-02500415v2/file/CoDaHu-FourierCoeff.pdf
https://hal.archives-ouvertes.fr/hal-02500415v2/file/CoDaHu-FourierCoeff.pdf
Publikováno v:
Advanced Materials Research. :1831-1835
In order to prepare special alcohol-soluble polyvinyl butyral (PVB), the reaction condition was explored in this paper after analyzing the molecular structure of PVB. Under a simple and economical condition, PVB with 14.2% of butyraldehyde group and
Autor:
Hong-Quan Li, Jun-Qi Hu
Publikováno v:
Potential Analysis. 33:355-386
By utilizing the Poincare inequality and representation formulae, it is shown that on the Heisenberg type group, ℍ(2n, m), there exists a constant C > 0 such that $$ |\nabla e^{t \Delta} f|(g) \leq C e^{t \Delta}(|\nabla f|)(g), \quad \forall g \in