Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Jun'ichi, Kotoku"'
Autor:
Takumasa Tsuji, Yukina Hirata, Kenya Kusunose, Masataka Sata, Shinobu Kumagai, Kenshiro Shiraishi, Jun’ichi Kotoku
Publikováno v:
BMC Medical Imaging, Vol 23, Iss 1, Pp 1-18 (2023)
Abstract Background This study was conducted to alleviate a common difficulty in chest X-ray image diagnosis: The attention region in a convolutional neural network (CNN) does not often match the doctor’s point of focus. The method presented herein
Externí odkaz:
https://doaj.org/article/0629e299231843059371ce9592363142
Autor:
Hiroe Seto, Asuka Oyama, Shuji Kitora, Hiroshi Toki, Ryohei Yamamoto, Jun’ichi Kotoku, Akihiro Haga, Maki Shinzawa, Miyae Yamakawa, Sakiko Fukui, Toshiki Moriyama
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Abstract We sought to verify the reliability of machine learning (ML) in developing diabetes prediction models by utilizing big data. To this end, we compared the reliability of gradient boosting decision tree (GBDT) and logistic regression (LR) mode
Externí odkaz:
https://doaj.org/article/67977fc19324478f8d3f4ab3988e8482
Autor:
Kenya Kusunose, Yukina Hirata, Natsumi Yamaguchi, Yoshitaka Kosaka, Takumasa Tsuji, Jun’ichi Kotoku, Masataka Sata
Publikováno v:
Frontiers in Cardiovascular Medicine, Vol 10 (2023)
BackgroundA deep learning (DL) model based on a chest x-ray was reported to predict elevated pulmonary artery wedge pressure (PAWP) as heart failure (HF).ObjectivesThe aim of this study was to (1) investigate the role of probability of elevated PAWP
Externí odkaz:
https://doaj.org/article/8bffc2ce566440d49d6f7b55aaa85a02
Autor:
Kenya Kusunose, Yukina Hirata, Natsumi Yamaguchi, Yoshitaka Kosaka, Takumasa Tsuji, Jun’ichi Kotoku, Masataka Sata
Publikováno v:
Frontiers in Cardiovascular Medicine, Vol 9 (2022)
BackgroundStress echocardiography is an emerging tool used to detect exercise-induced pulmonary hypertension (EIPH). However, facilities that can perform stress echocardiography are limited by issues such as cost and equipment.ObjectiveWe evaluated t
Externí odkaz:
https://doaj.org/article/16d0ebf8f89941c49aa2e6cd4c666e20
Autor:
Takumasa Tsuji, Yuta Hirose, Kohei Fujimori, Takuya Hirose, Asuka Oyama, Yusuke Saikawa, Tatsuya Mimura, Kenshiro Shiraishi, Takenori Kobayashi, Atsushi Mizota, Jun’ichi Kotoku
Publikováno v:
BMC Ophthalmology, Vol 20, Iss 1, Pp 1-9 (2020)
Abstract Background Classification of optical coherence tomography (OCT) images can be achieved with high accuracy using classical convolution neural networks (CNN), a commonly used deep learning network for computer-aided diagnosis. Classical CNN ha
Externí odkaz:
https://doaj.org/article/2f5c4d459ed9491ea5178bf919019f4c
Autor:
Shinobu Kumagai, Norikazu Arai, Takeshi Takata, Daisuke Kon, Toshiya Saitoh, Hiroshi Oba, Shigeru Furui, Jun’ichi Kotoku, Kenshiro Shiraishi
Publikováno v:
Journal of Contemporary Brachytherapy, Vol 12, Iss 1, Pp 53-60 (2020)
Externí odkaz:
https://doaj.org/article/2eebc58c241a40288296be8b59e98572
Autor:
Hiroe Seto, Asuka Oyama, Shuji Kitora, Hiroshi Toki, Ryohei Yamamoto, Jun’ichi Kotoku, Akihiro Haga, Maki Shinzawa, Miyae Yamakawa, Sakiko Fukui, Toshiki Moriyama
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-1 (2022)
Externí odkaz:
https://doaj.org/article/f580fec88787474285aaf34af430404e
Publikováno v:
Heart; 4/15/2024, Vol. 110 Issue 8, p586-593, 8p
Autor:
Akihisa Kataoka, Takeshi Takata, Ayaka Yanagawa, Kento Kito, Masataka Arakawa, Ruri Ishibashi, Taiga Katayama, Miho Mitsui, Fukuko Nagura, Hideyuki Kawashima, Hirofumi Hioki, Yusuke Watanabe, Ken Kozuma, Jun’ichi Kotoku
Publikováno v:
JACC: Asia. 3:301-309
Autor:
Ayaka Yanagawa, Takeshi Takata, Taichi Onimaru, Takahiro Honjo, Takeyuki Sajima, Akihito Kakinuma, Akihisa Kataoka, Jun’ichi Kotoku
Publikováno v:
Journal of Radiation Research. 64:379-386
Catheterization for structural heart disease (SHD) requires fluoroscopic guidance, which exposes health care professionals to radiation exposure risk. Nevertheless, existing freestanding radiation shields for anesthesiologists are typically simple, u