Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Julya S. Kisrieva"'
Autor:
Natalia A Petushkova, Mikhail A Pyatnitskiy, Vladislav A Rudenko, Olesya V Larina, Oxana P Trifonova, Julya S Kisrieva, Natalia F Samenkova, Galina P Kuznetsova, Irina I Karuzina, Andrey V Lisitsa
Publikováno v:
PLoS ONE, Vol 9, Iss 8, p e103950 (2014)
BackgroundThere are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the trainin
Externí odkaz:
https://doaj.org/article/19e68aad4d1042b8af826bda1c4f9e10
Autor:
Julya S. Kisrieva, V. N. Kashirtseva, A. V. Lisitsa, Oxana P. Trifonova, N. F. Samenkova, A S Chernobrovkin, N. A. Petushkova, O. V. Larina, N. F. Belayeva, G P Kuznetsova, I. I. Karuzina
Publikováno v:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 6:23-30
Using one-dimensional proteomic mapping (combination of one-dimensional gel electrophoresis (1DE) with subsequent mass spectrometry MALDI-TOF-PMF) the protein profile of Danio rerio embryos has been investigated. The fish species Danio rerio is the m
Autor:
V N Kashirceva, A. V. Lisitsa, N. A. Petushkova, A S Chernobrovkin, N. F. Samenkova, O B Larina, Julya S. Kisrieva, G P Kuznetsova, I. I. Karuzina, N. F. Belayeva, Oxana P. Trifonova
Publikováno v:
Biomeditsinskaya Khimiya. 57:593-603
In the present study, a proteomic technology combining one-dimensional gel electrophoresis (1DE) with subsequent mass spectrometry (MALDI-TOF-PMF) has been successfully applied for revelation of changes in the protein profile of zebrafish (Danio reri
Autor:
Oxana P. Trifonova, O. V. Larina, Julya S. Kisrieva, N. F. Samenkova, N. A. Petushkova, Andrey Lisitsa, Mikhail A. Pyatnitskiy, G P Kuznetsova, I. I. Karuzina, Vladislav A. Rudenko
Publikováno v:
PLoS ONE, Vol 9, Iss 8, p e103950 (2014)
PLoS ONE
PLoS ONE
BackgroundThere are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the trainin