Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Juliette Hell"'
Autor:
Juliette Hell, Alan D. Rendall
Publikováno v:
Nonlinear Analysis: Real World Applications. 24:175-189
The multiple futile cycle is an important building block in networks of chemical reactions arising in molecular biology. A typical process which it describes is the addition of n phosphate groups to a protein. It can be modelled by a system of ordina
Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler,
Autor:
Juliette Hell, Alan D. Rendall
Publikováno v:
Modeling Cellular Systems ISBN: 9783319458311
The MAP kinase cascade is an important signal transduction system in molecular biology for which a lot of mathematical modelling has been done. This paper surveys what has been proved mathematically about the qualitative properties of solutions of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d151f2969684f4a1e5222c1bbb2baba6
https://doi.org/10.1007/978-3-319-45833-5_6
https://doi.org/10.1007/978-3-319-45833-5_6
Autor:
Juliette Hell, Alan D. Rendall
Publikováno v:
Mathematical biosciences.
The MAP kinase cascade is a network of enzymatic reactions arranged in layers. In each layer occurs a multiple futile cycle of phosphorylations. The fully phosphorylated substrate then serves as an enzyme for the layer below. This paper focuses on th
We consider a minimally coupled scalar field with a monomial potential and a perfect fluid in flat FLRW cosmology. We apply local and global dynamical systems techniques to a new three-dimensional dynamical systems reformulation of the field equation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb5413d322ca00450499830814b2423d
http://arxiv.org/abs/1503.06994
http://arxiv.org/abs/1503.06994
Autor:
Felix Schulze, Brian H. Smith, Amos Koeller, Nihar Jangle, Abderrahim Azouani, Mariel Sáez, Sandra Ritthaler, Oliver C. Schnürer, Juliette Hell, Tobias Marxen, Marc Georgi
Publikováno v:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We consider convex symmetric lens-shaped networks in R 2 \mathbb {R}^2 that evolve under the curve shortening flow. We show that the enclosed convex domain shrinks to a point in finite time. Furthermore, after appropriate rescaling the evolving netwo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83d6cad613085cee81aa79e05537464e
Autor:
Juliette Hell
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 21:137-137
Autor:
Oliver C. Schnürer, Abderrahim Azouani, Marc Georgi, Juliette Hell, Nihar Jangle, Amos Koeller, Tobias Marxen, Sandra Ritthaler, Mariel Sáez, Felix Schulze, Brian Smith
Publikováno v:
Transactions of the American Mathematical Society; Nov2010, Vol. 363 Issue 5, p2265-2294, 30p