Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Julien Taillard"'
Autor:
Abdelahad, Chraibi, David, Delerue, Julien, Taillard, Ismat, Chaib Draa, Régis, Beuscart, Arnaud, Hansske
Publikováno v:
Studies in health technology and informatics. 281
The International Statistical Classification of Diseases and Related Health Problems (ICD) is one of the widely used classification system for diagnoses and procedures to assign diagnosis codes to Electronic Health Record (EHR) associated with a pati
Autor:
Ismat Chaib Draa, Julien Taillard, Arnaud Hansske, David Delerue, Abdelahad Chraibi, Régis Beuscart
Publikováno v:
MIE
The International Statistical Classification of Diseases and Related Health Problems (ICD) is one of the widely used classification system for diagnoses and procedures to assign diagnosis codes to Electronic Health Record (EHR) associated with a pati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::63d3159892dcbe63339085a3125f5792
https://doi.org/10.3233/shti210178
https://doi.org/10.3233/shti210178
Publikováno v:
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, In press, pp.1-1. ⟨10.1109/TKDE.2020.2983692⟩
IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2), pp.506-518. ⟨10.1109/TKDE.2020.2983692⟩
IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, In press, pp.1-1. ⟨10.1109/TKDE.2020.2983692⟩
IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2), pp.506-518. ⟨10.1109/TKDE.2020.2983692⟩
We address the problem of biclustering on heterogeneous data, that is, data of various types (binary, numeric, symbolic, temporal). We propose a new method, HBC-t (Heterogeneous BiClustering for temporal data), designed to extract biclusters from het
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6710e3c1a7b64ef24e5a0ab87d0aa5ec
https://hal.archives-ouvertes.fr/hal-02927063
https://hal.archives-ouvertes.fr/hal-02927063
Autor:
David Delerue, Adrien Hertault, Julien Taillard, Sébastien Amiot, Ismat Draa Chaib, Bruno Lernout, Abdelahad Chraibi
Publikováno v:
Annals of Vascular Surgery. 68:99
Autor:
Justine Lemtiri-Florek, Julien Taillard, Laetitia Jourdan, Hélène Martin-Huyghe, Clarisse Dhaenens, Valérie Leclercq, David Delerue, Arnaud Hansske, Julie Jacques
Publikováno v:
International Journal of Medical Informatics
International Journal of Medical Informatics, Elsevier, In press, October 2020, 142, ⟨10.1016/j.ijmedinf.2020.104242⟩
International Journal of Medical Informatics, 2020, October 2020, 142, ⟨10.1016/j.ijmedinf.2020.104242⟩
International Journal of Medical Informatics, Elsevier, In press, October 2020, 142, ⟨10.1016/j.ijmedinf.2020.104242⟩
International Journal of Medical Informatics, 2020, October 2020, 142, ⟨10.1016/j.ijmedinf.2020.104242⟩
Background Multi-drug resistant (MDR) bacteria are a major health concern. In this retrospective study, a rule-based classification algorithm, MOCA-I (Multi-Objective Classification Algorithm for Imbalanced data) is used to identify hospitalized pati
Autor:
Renaud Perichon, G. Ficheur, Cristina Cozma, Emmanuel Chazard, Régis Bordet, Alexandru Amarioarei, Julie Jacques, Vincent Vandewalle, Porpimol Chaiwuttisak, Apolline Lansiaux, Maxence Vandromme, Clarisse Dhaenens, Julien Taillard, Laetitia Jourdan, Arnaud Hansske, Marie-Eléonore Kessaci, Cristian Preda, David Delerue
Publikováno v:
Innovation and Research in BioMedical engineering
Innovation and Research in BioMedical engineering, 2018, 39 (2), pp.83-92. ⟨10.1016/j.irbm.2017.12.002⟩
Innovation and Research in BioMedical engineering, Elsevier Masson, 2018, 39 (2), pp.83-92. ⟨10.1016/j.irbm.2017.12.002⟩
Innovation and Research in BioMedical engineering, 2018, 39 (2), pp.83-92. ⟨10.1016/j.irbm.2017.12.002⟩
Innovation and Research in BioMedical engineering, Elsevier Masson, 2018, 39 (2), pp.83-92. ⟨10.1016/j.irbm.2017.12.002⟩
International audience; A better understanding of “patient pathway” thanks to data analysis can lead to better treatments for patients. The ClinMine project, supported by the The French National Research Agency (ANR), aims at proposing, from vari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17b1af79f08c72a0b002a9d7f5344668
https://hal.inria.fr/hal-01692197/document
https://hal.inria.fr/hal-01692197/document
Publikováno v:
Applied Soft Computing
Applied Soft Computing, Elsevier, 2015, 34, pp.705--720. ⟨10.1016/j.asoc.2015.06.002⟩
Applied Soft Computing, 2015, 34, pp.705--720. ⟨10.1016/j.asoc.2015.06.002⟩
Applied Soft Computing, Elsevier, 2015, 34, pp.705--720. ⟨10.1016/j.asoc.2015.06.002⟩
Applied Soft Computing, 2015, 34, pp.705--720. ⟨10.1016/j.asoc.2015.06.002⟩
Graphical abstractDisplay Omitted HighlightsFormulation of the classification rule mining problem as a multi-objective problem.Proposal of MOCA-I that deals both with uncertainty, class imbalance and volumetry.Comparison of different MOCA-I based DML
Autor:
Julien Taillard, Laetitia Jourdan, Julien Jacques, Clarisse Dhaenens, Arnaud Hansske, Maxence Vandromme
Publikováno v:
Knowledge-Based Systems
Knowledge-Based Systems, 2017, 122, pp.148-158. ⟨10.1016/j.knosys.2017.02.001⟩
Knowledge-Based Systems, Elsevier, 2017, 122, pp.148-158. ⟨10.1016/j.knosys.2017.02.001⟩
Knowledge-Based Systems, 2017, 122, pp.148-158. ⟨10.1016/j.knosys.2017.02.001⟩
Knowledge-Based Systems, Elsevier, 2017, 122, pp.148-158. ⟨10.1016/j.knosys.2017.02.001⟩
International audience; This study focuses on the problem of supervised classification on heterogeneous temporal data featuring a mixture of attribute types (numeric, binary, symbolic, temporal). We present a model for classification rules designed t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee8d5630cf4be5efc92b33e572e2e837
https://hal.science/hal-01564520
https://hal.science/hal-01564520
Publikováno v:
International Workshop on Machine Learning, Optimization and Big Data
International Workshop on Machine Learning, Optimization and Big Data, Aug 2016, Volterra, Italy. pp.12
Lecture Notes in Computer Science ISBN: 9783319514680
MOD
HAL
International Workshop on Machine Learning, Optimization and Big Data, Aug 2016, Volterra, Italy. pp.12
Lecture Notes in Computer Science ISBN: 9783319514680
MOD
HAL
International audience; We define the problem of biclustering on heterogeneous data,that is, data of various types (binary, numeric, etc.). This problem hasnot yet been investigated in the biclustering literature.We propose a newmethod, HBC (Heteroge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de53569228dc5a4408017630e0791cba
https://inria.hal.science/hal-01420947
https://inria.hal.science/hal-01420947
Publikováno v:
Metaheuristics International Conference (MIC)
Metaheuristics International Conference (MIC), Jun 2015, Agadir, Morocco. pp.10
HAL
Metaheuristics International Conference (MIC), Jun 2015, Agadir, Morocco. pp.10
HAL
International audience; Classification is a key problem in the machine learning field, and some metaheuristics have been successfully adapted to answer this problem. However, difficulties commonly arise when a classi- fication problem is described by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3dcbe0291d3819a8012e85a10ae60417
https://inria.hal.science/hal-01249092
https://inria.hal.science/hal-01249092