Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Julien Roques"'
Autor:
Julien ROQUES
Publikováno v:
Journal of the Mathematical Society of Japan.
Autor:
Julien Roques
Publikováno v:
Proceedings of the American Mathematical Society. 150:1167-1176
q q -Difference equations appear in various contexts in mathematics and physics. The “basis” q q is sometimes a parameter, sometimes a fixed complex number. In both cases, one classically associates to any series solution of such equations its q
Publikováno v:
Transcendence in Algebra, Combinatorics, Geometry and Number Theory. TRANS19 – Transient Transcendence in Transylvania, Brașov, Romania, May 13–17, 2019, Revised and Extended Contributions
Alin Bostan; Kilian Raschel. Transcendence in Algebra, Combinatorics, Geometry and Number Theory. TRANS19 – Transient Transcendence in Transylvania, Brașov, Romania, May 13–17, 2019, Revised and Extended Contributions, 373, Springer International Publishing, pp.61-89, 2021, Springer Proceedings in Mathematics & Statistics, 978-3-030-84303-8. ⟨10.1007/978-3-030-84304-5_3⟩
Transcendence in Algebra, Combinatorics, Geometry and Number Theory ISBN: 9783030843038
Alin Bostan; Kilian Raschel. Transcendence in Algebra, Combinatorics, Geometry and Number Theory. TRANS19 – Transient Transcendence in Transylvania, Brașov, Romania, May 13–17, 2019, Revised and Extended Contributions, 373, Springer International Publishing, pp.61-89, 2021, Springer Proceedings in Mathematics & Statistics, 978-3-030-84303-8. ⟨10.1007/978-3-030-84304-5_3⟩
Transcendence in Algebra, Combinatorics, Geometry and Number Theory ISBN: 9783030843038
International audience; The kernel method is an essential tool for the study of generating series of walks in the quarter plane. This method involves equating to zero a certain polynomial-the kernel polynomial-and using properties of the curve-the ke
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e20ef2771e8f6e5cf97be522e1b7193
https://hal.science/hal-03513338/file/kernel.pdf
https://hal.science/hal-03513338/file/kernel.pdf
Autor:
Julien Roques
Publikováno v:
International Mathematics Research Notices. 2021:9937-9957
This paper is a 1st step in the direction of a better understanding of the structure of the so-called Mahler systems: we classify these systems over the field $\mathscr{H}$ of Hahn series over $\overline{{\mathbb{Q}}}$ and with value group ${\mathbb{
Autor:
Julien Roques, Jacques Sauloy
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :129-154
This paper is concerned with linear q-difference equations. Our main result is an explicit formula for the Euler characteristic of the sheaf of analytic solutions attached to any linear algebraic q-difference equation. This formula involves certain i
Publikováno v:
Mathematische Zeitschrift
Mathematische Zeitschrift, 2021, ⟨10.1007/s00209-020-02669-4⟩
Mathematische Zeitschrift, Springer, 2021, ⟨10.1007/s00209-020-02669-4⟩
Mathematische Zeitschrift, 2021, ⟨10.1007/s00209-020-02669-4⟩
Mathematische Zeitschrift, Springer, 2021, ⟨10.1007/s00209-020-02669-4⟩
In this paper, we study the algebraic relations satisfied by the solutions of q-difference equations and their transforms with respect to an auxiliary operator. Our main tools are the parametrized Galois theories developed in Hardouin and Singer (Mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46e01b03d066381d832632b2bd74c134
https://hal.science/hal-01959032
https://hal.science/hal-01959032
Publikováno v:
Journal de l'École polytechnique — Mathématiques
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, 8, pp.147-168. ⟨10.5802/jep.143⟩
Journal de l'École polytechnique — Mathématiques, École polytechnique, 2021, 8, pp.147-168. ⟨10.5802/jep.143⟩
International audience; We develop general criteria that ensure that any non-zero solution of a given second-order difference equation is differentially transcendental, which apply uniformly in particular cases of interest, such as shift difference e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e220d5e7cc48cf4a8f0484587877ca3
https://hal.archives-ouvertes.fr/hal-03361384/document
https://hal.archives-ouvertes.fr/hal-03361384/document
Autor:
Sara Checcoli, Julien Roques
Publikováno v:
Israël Journal of Mathematics
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 228 (2), pp.801-833
Mahler functions are power series f(x) with complex coefficients for which there exist a natural number n and an integer l ≥ 2 such that f(x), f(xl),..., $$f({x^{{\ell ^{n - 1}}}}),f({x^{{\ell ^n}}})$$ are linearly dependent over ℂ(x). The study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c64b0fddae7ec6ab0f0b40c218e75dd6
https://hal.archives-ouvertes.fr/hal-01983025
https://hal.archives-ouvertes.fr/hal-01983025
Publikováno v:
Journal of the European Mathematical Society
Journal of the European Mathematical Society, European Mathematical Society, 2018, 20 (9), pp.2209-2238. ⟨10.4171/JEMS/810⟩
Journal of the European Mathematical Society, 2018, 20 (9), pp.2209-2238. ⟨10.4171/JEMS/810⟩
Journal of the European Mathematical Society, European Mathematical Society, 2018, 20 (9), pp.2209-2238. ⟨10.4171/JEMS/810⟩
Journal of the European Mathematical Society, 2018, 20 (9), pp.2209-2238. ⟨10.4171/JEMS/810⟩
International audience; The last years have seen a growing interest from mathematicians in Mahler functions. This class of functions includes the generating series of the automatic sequences. The present paper is concerned with the following problem,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4dfeb9aec386044f64042991e20935fa
https://hal.archives-ouvertes.fr/hal-01897318
https://hal.archives-ouvertes.fr/hal-01897318