Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Julien Narboux"'
Autor:
Predrag Janičić, Julien Narboux
Publikováno v:
Journal of Automated Reasoning
Journal of Automated Reasoning, inPress, ⟨10.1007/s10817-022-09629-z⟩
Journal of Automated Reasoning, inPress, ⟨10.1007/s10817-022-09629-z⟩
International audience
Autor:
Predrag Janičić, Julien Narboux
Publikováno v:
Proceedings of Automated Deduction in Geometry 2021
Automated Deduction in Geometry
Automated Deduction in Geometry, Zoltán Kovács, Sep 2021, Hagenberg, Austria
Automated Deduction in Geometry
Automated Deduction in Geometry, Zoltán Kovács, Sep 2021, Hagenberg, Austria
We report on a new, simple, modular, and flexible approach for automated generation of illustrations for (readable) synthetic geometry proofs. The underlying proofs are generated using the Larus automated prover for coherent logic, and corresponding
Publikováno v:
Mathematics Education in the Age of Artificial Intelligence ISBN: 9783030869083
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::623558467d630151845ec34f9bd81d28
https://doi.org/10.1007/978-3-030-86909-0_8
https://doi.org/10.1007/978-3-030-86909-0_8
Publikováno v:
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence, 2019, pp.53. ⟨10.1007/s10472-018-9606-x⟩
Annals of Mathematics and Artificial Intelligence, 85, 2-4, pp. 213-257
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2019, pp.53. ⟨10.1007/s10472-018-9606-x⟩
Annals of Mathematics and Artificial Intelligence, 85, 213-257
Annals of Mathematics and Artificial Intelligence, 2019, pp.53. ⟨10.1007/s10472-018-9606-x⟩
Annals of Mathematics and Artificial Intelligence, 85, 2-4, pp. 213-257
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2019, pp.53. ⟨10.1007/s10472-018-9606-x⟩
Annals of Mathematics and Artificial Intelligence, 85, 213-257
We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We u
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. ⟨10.1016/j.jsc.2018.04.007⟩
James H. Davenport and Temur Kutsia
Journal of Symbolic Computation, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. ⟨10.1016/j.jsc.2018.04.007⟩
Journal of Symbolic Computation, Elsevier, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. ⟨10.1016/j.jsc.2018.04.007⟩
James H. Davenport and Temur Kutsia
Journal of Symbolic Computation, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. ⟨10.1016/j.jsc.2018.04.007⟩
International audience; This paper describes the formalization of the arithmetization of Euclidean plane geometry in the Coq proof assistant. As a basis for this work, Tarski's system of geometry was chosen for its well-known metamath-ematical proper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d19606004baeac5b5c1824c21361cd57
https://hal.inria.fr/hal-01483457/file/extended-arithmetization.pdf
https://hal.inria.fr/hal-01483457/file/extended-arithmetization.pdf
Publikováno v:
Journal of Automated Reasoning
Journal of Automated Reasoning, Springer Verlag, 2019, 62 (1), pp.68. ⟨10.1007/s10817-017-9422-8⟩
Journal of Automated Reasoning, 2019, 62 (1), pp.68. ⟨10.1007/s10817-017-9422-8⟩
Journal of Automated Reasoning, Springer Verlag, 2019, 62 (1), pp.68. ⟨10.1007/s10817-017-9422-8⟩
Journal of Automated Reasoning, 2019, 62 (1), pp.68. ⟨10.1007/s10817-017-9422-8⟩
online first; International audience; In this paper we focus on the formalization of the proofs of equivalence between different versions of Euclid's 5 th postulate. Our study is performed in the context of Tarski's neutral geometry, or equivalently
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5295cfedebbea0e5f43a1d51340f29ca
https://hal.inria.fr/hal-01178236v2/document
https://hal.inria.fr/hal-01178236v2/document
Autor:
Gabriel Braun, Julien Narboux
Publikováno v:
Journal of Automated Reasoning
Journal of Automated Reasoning, Springer Verlag, 2017, 58 (2), pp.23. ⟨10.1007/s10817-016-9374-4⟩
Journal of Automated Reasoning, 2017, 58 (2), pp.23. ⟨10.1007/s10817-016-9374-4⟩
Journal of Automated Reasoning, Springer Verlag, 2017, 58 (2), pp.23. ⟨10.1007/s10817-016-9374-4⟩
Journal of Automated Reasoning, 2017, 58 (2), pp.23. ⟨10.1007/s10817-016-9374-4⟩
International audience; In this paper, we report on the formalization of a synthetic proof of Pappus' theorem. We provide two versions of the theorem: the first one is proved in neutral geometry (without assuming the parallel postulate), the second (
Publikováno v:
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2015, 73 (3), pp.25. ⟨10.1007/s10472-014-9443-5⟩
Annals of Mathematics and Artificial Intelligence, 2015, 73 (3), pp.25. ⟨10.1007/s10472-014-9443-5⟩
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2015, 73 (3), pp.25. ⟨10.1007/s10472-014-9443-5⟩
Annals of Mathematics and Artificial Intelligence, 2015, 73 (3), pp.25. ⟨10.1007/s10472-014-9443-5⟩
International audience; The power of state-of-the-art automated and interactive the-orem provers has reached the level at which a significant portion of non-trivial mathematical contents can be formalized almost fully automat-ically. In this paper we
Autor:
Julien Narboux, David Braun
Publikováno v:
Mathematics in Computer Science
Mathematics in Computer Science, 2016, 10 (1), pp.17. ⟨10.1007/s11786-016-0254-4⟩
Mathematics in Computer Science, Springer, 2016, 10 (1), pp.17. ⟨10.1007/s11786-016-0254-4⟩
Mathematics in Computer Science, 2016, 10 (1), pp.17. ⟨10.1007/s11786-016-0254-4⟩
Mathematics in Computer Science, Springer, 2016, 10 (1), pp.17. ⟨10.1007/s11786-016-0254-4⟩
International audience; Triangle centers such as the center of gravity, the circumcenter, the orthocenter are well studied by geometers. Recently, under the guidance of Clark Kimberling, an electronic encyclopedia of triangle centers (ETC) has been d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::021a26c98370b0df3cc72a8f8dfe4455
https://inria.hal.science/hal-01174131v2/file/certified-etc.pdf
https://inria.hal.science/hal-01174131v2/file/certified-etc.pdf