Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Julien Mille"'
We propose to tackle dynamic texture video classification as a pattern mining problem. In a nutshell, videos are represented by frequent sequences of representative patches. Firstly, we use a Gaussian Mixture Model to make the clustering of patches f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff980259bc1e8e85c5b6631cb16c5cca
https://hal.science/hal-03700841
https://hal.science/hal-03700841
Publikováno v:
International Journal of Mathematical Imaging and Vision
International Journal of Mathematical Imaging and Vision, 2019, 61 (3), pp.310-330. ⟨10.1007/s10851-018-0836-7⟩
International Journal of Mathematical Imaging and Vision, Springer Verlag, 2019, 61 (3), pp.310-330. ⟨10.1007/s10851-018-0836-7⟩
International Journal of Mathematical Imaging and Vision, 2019, 61 (3), pp.310-330. ⟨10.1007/s10851-018-0836-7⟩
International Journal of Mathematical Imaging and Vision, Springer Verlag, 2019, 61 (3), pp.310-330. ⟨10.1007/s10851-018-0836-7⟩
International audience; Among the various existing and mathematically equivalent definitions of the skeleton, we consider the set of critical points of the Euclidean distance transform of the shape. The problem of detecting these points and using the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e94e427f8331c6b165b913448651f87
https://hal.science/hal-01866288
https://hal.science/hal-01866288
Publikováno v:
Computer Vision – ECCV 2018 ISBN: 9783030012601
ECCV (13)
ECCV 2018-European Conference on Computer Vision
ECCV 2018-European Conference on Computer Vision, Sep 2018, Munich, Germany. pp.1-17
ECCV (13)
ECCV 2018-European Conference on Computer Vision
ECCV 2018-European Conference on Computer Vision, Sep 2018, Munich, Germany. pp.1-17
Human activity recognition is typically addressed by detecting key concepts like global and local motion, features related to object classes present in the scene, as well as features related to the global context. The next open challenges in activity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cba393466b06cf34975fb5aab299afaf
https://doi.org/10.1007/978-3-030-01261-8_7
https://doi.org/10.1007/978-3-030-01261-8_7
Publikováno v:
ICCV Workshop on Hands in Action
ICCV Workshop on Hands in Action, Oct 2017, Venice, Italy
ICCV Workshops
ICCV Workshop on Hands in Action, Oct 2017, Venice, Italy
ICCV Workshops
We propose a new spatio-temporal attention based mechanism for human action recognition able to automatically attend to the hands most involved into the studied action and detect the most discriminative moments in an action. Attention is handled in a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a962516f922a9a3d95324bab429a20c6
https://hal.archives-ouvertes.fr/hal-01575390
https://hal.archives-ouvertes.fr/hal-01575390
Autor:
Charles-Edmond Bichot, Julien Mille, Oya Celiktutan, Bulent Sankur, Eric Lombardi, Emmanuel Dellandréa, Christophe Garcia, Gonen Eren, Christian Wolf, Moez Baccouche, Mingyuan Jiu, Emre Dogan
Publikováno v:
Computer Vision and Image Understanding
Computer Vision and Image Understanding, Elsevier, 2014, 127, pp.14-30. ⟨10.1016/j.cviu.2014.06.014⟩
Computer Vision and Image Understanding, Elsevier, 2014, 127, pp.14-30. ⟨10.1016/j.cviu.2014.06.014⟩
International audience; Evaluating the performance of computer vision algorithms is classically done by reporting classification error or accuracy, if the problem at hand is the classification of an object in an image, the recognition of an activity
Publikováno v:
Pattern Analysis and Applications
Pattern Analysis and Applications, Springer Verlag, 2014, 3, 17, pp.567-585. ⟨10.1007/s10044-013-0346-6⟩
Pattern Analysis and Applications, Springer Verlag, 2014, 3, 17, pp.567-585. ⟨10.1007/s10044-013-0346-6⟩
International audience; Object detection in a dynamic backgroundis a challenging task in many computer vision applica-tions. In some situations, the motion of objects can bepredicted thanks to its regularity (e.g. vehicle motion,pedestrian motion). I
Publikováno v:
Pattern Recognition Letters. 33:1710-1716
Background models are used for object detection in many computer vision algorithms. In this article, we propose a novel background modeling method based on frequency for spatially varying and time repetitive textured background. The local Fourier tra
Autor:
Leo Joskowicz, Moti Freiman, Karl Krissian, Jacob Sosna, Coert Metz, Noy Cohen, Ingrid Sanchez, Julien Mille, T. van Walsum, Wiro J. Niessen, Maciej Orkisz, Wilbur C.K. Wong, M. P M Q van Gils, K. Hameeteman, M. Hernández Hoyos, Gabriel P. Krestin, L. Florez Valencia, L. van den Borne, Olivier Cuisenaire, Michiel Schaap, Mehmet Akif Gulsun, P. Berman, A. van der Lugt, Philippe Douek, Maria A. Zuluaga, Huseyin Tek, M. Aissat, Fethallah Benmansour, S. Rozie, Albert C. S. Chung
Publikováno v:
Medical Image Analysis
Medical Image Analysis, Elsevier, 2011, 15 (4), pp.477-488. ⟨10.1016/j.media.2011.02.004⟩
Medical Image Analysis, 15(4), 477-488. Elsevier
Medical Image Analysis, Elsevier, 2011, 15 (4), pp.477-488. ⟨10.1016/j.media.2011.02.004⟩
Medical Image Analysis, 15(4), 477-488. Elsevier
International audience; This paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56
Publikováno v:
International Journal of Computer Vision
International Journal of Computer Vision, Springer Verlag, 2015, 112 (1), pp.1-22. ⟨10.1007/s11263-014-0751-3⟩
International Journal of Computer Vision, Springer Verlag, 2015, 112 (1), pp.1-22. ⟨10.1007/s11263-014-0751-3⟩
International audience; Minimum cost paths have been extensively studied theoretical tools for interactive image segmentation. The existing geodesically linked active contour (GLAC) model, which basically consists of a set of vertices connected by pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af3772aa76ff8d732eb53b7e7e5c9e6a
https://hal.archives-ouvertes.fr/hal-01100386/document
https://hal.archives-ouvertes.fr/hal-01100386/document