Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Julie Escoda"'
Publikováno v:
e-Journal of Nondestructive Testing, Vol 29, Iss 3 (2024)
Externí odkaz:
https://doaj.org/article/bcc69301c20945b392f5c753ada0c8cb
Publikováno v:
e-Journal of Nondestructive Testing, Vol 28, Iss 9 (2023)
Dans ce travail nous proposons une méthodologie pour l’apprentissage d’un réseau de neurones pour le post-traitement et la réduction d’artefacts de tomographie par rayons X en configuration éparse. L’acquisition d’une base de données c
Externí odkaz:
https://doaj.org/article/0971fb53f10f43089dae7915d93b7fab
Autor:
Julie Escoda, Roberto Miorelli, Caroline Vienne, Romain Vo, Etienne Decenciere, Aysun Sezer, Hervé Le Borgne, Nicolas Allezard
Publikováno v:
e-Journal of Nondestructive Testing, Vol 28, Iss 9 (2023)
L’objectif de cet article est de présenter deux applications possibles des méthodes basées sur l’apprentissage profond, dans le cadre du contrôle non destructif par rayons X. Nous choisissons de présenter une méthode de sanction automatique
Externí odkaz:
https://doaj.org/article/38cd3419416d481f8ec69e32b442268e
Publikováno v:
e-Journal of Nondestructive Testing, Vol 28, Iss 9 (2023)
Cet article évalue le potentiel du convolutional sparse coding (CSC) pour réduire les artefacts dans les images 3D par tomographie rayons X dans le cas où peu de projections sont disponibles. La méthode CSC proposée est testée sur des échantil
Externí odkaz:
https://doaj.org/article/64203b6e26cb4b6aa65efc4befc539e7
Publikováno v:
e-Journal of Nondestructive Testing, Vol 28, Iss 9 (2023)
Cet article propose une méthodologie pour améliorer la qualité de la reconstruction tomographique par rayons X en utilisant la connaissance a priori du modèle 3D de l'objet inspecté. Pour cela, la conception assistée par ordinateur (CAO) de l'o
Externí odkaz:
https://doaj.org/article/25852bd7ddc04c43aed71a4c203d6b11
Publikováno v:
Proceedings of the ASME 2022
X-ray CT, reconstruction, sparse view, sinogram interpolation, reconstruction denoising, deep learning, con-volutional neural networks
X-ray CT, reconstruction, sparse view, sinogram interpolation, reconstruction denoising, deep learning, con-volutional neural networks, Jul 2022, San diego (Californie), United States
X-ray CT, reconstruction, sparse view, sinogram interpolation, reconstruction denoising, deep learning, con-volutional neural networks
X-ray CT, reconstruction, sparse view, sinogram interpolation, reconstruction denoising, deep learning, con-volutional neural networks, Jul 2022, San diego (Californie), United States
X-ray Computed Tomography (CT) has been increasingly used in many industrial domains for its unique capability of controlling both the integrity and dimensional conformity of parts. Still, it fails to be adopted as a standard technique for on-line mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d51a9df4f1b702499397485a87cf946
https://mines-paristech.hal.science/hal-03933448
https://mines-paristech.hal.science/hal-03933448
Publikováno v:
International Journal of Engineering Science
International Journal of Engineering Science, Elsevier, 2016, 98, pp.60-71. ⟨10.1016/j.ijengsci.2015.07.010⟩
International Journal of Engineering Science, Elsevier, 2016, 98, pp.60-71. ⟨10.1016/j.ijengsci.2015.07.010⟩
International audience; The mechanical role of the shape of the aggregates, and their spatial distribution in concrete materials is examined. The effect on the macroscopic mechanical response as well as on the local stress fields are investigated by
Publikováno v:
Journal of Microscopy. 258:31-48
This paper aims at developing a random morphological model for concrete microstructures. A 3D image of concrete is obtained by microtomography and is used in conjunction with the concrete formulation to build and validate the model through morphologi
Publikováno v:
Cement and Concrete Research
Cement and Concrete Research, Elsevier, 2011, 41 (5), pp.542-556. ⟨10.1016/j.cemconres.2011.02.003⟩
Cement and Concrete Research, Elsevier, 2011, 41 (5), pp.542-556. ⟨10.1016/j.cemconres.2011.02.003⟩
International audience; This study concerns the prediction of the elastic properties of a 3D mortar image, obtained by micro-tomography, using a combined image segmentation and numerical homogenization approach. The microstructure is obtained by segm
Publikováno v:
70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008.
We use truncated fractal Levy motion (fLm) to generate synthetic well logs, in order to reproduce more closely well statistics than with the commonly used Gaussian distribution. Four parameters are required to define the truncated fLm: alpha, which d