Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Julie E. Bourdeau"'
Autor:
Steven E. Zhang, Glen T. Nwaila, Shenelle Agard, Julie E. Bourdeau, Emmanuel John M. Carranza, Yousef Ghorbani
Publikováno v:
Artificial Intelligence in Geosciences, Vol 4, Iss , Pp 137-149 (2023)
Evolution in geoscientific data provides the mineral industry with new opportunities. A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity. This directi
Externí odkaz:
https://doaj.org/article/3f12ef98690a45ab9673b30bd1e1666f
Autor:
Steven E. Zhang, Glen T. Nwaila, Julie E. Bourdeau, Yousef Ghorbani, Emmanuel John M. Carranza
Publikováno v:
Artificial Intelligence in Geosciences, Vol 4, Iss , Pp 9-21 (2023)
Remote sensing data is a cheap form of surficial geoscientific data, and in terms of veracity, velocity and volume, can sometimes be considered big data. Its spatial and spectral resolution continues to improve over time, and some modern satellites,
Externí odkaz:
https://doaj.org/article/8c2410056b5241adb33d298d8ab061f1
Autor:
Glen T. Nwaila, Steven E. Zhang, Julie E. Bourdeau, Yousef Ghorbani, Emmanuel John M. Carranza
Publikováno v:
Artificial Intelligence in Geosciences, Vol 3, Iss , Pp 71-85 (2022)
Most known mineral deposits were discovered by accident using expensive, time-consuming, and knowledge-based methods such as stream sediment geochemical data, diamond drilling, reconnaissance geochemical and geophysical surveys, and/or remote sensing
Externí odkaz:
https://doaj.org/article/214630e2ad9347879d34410869b8635d
Publikováno v:
Artificial Intelligence in Geosciences, Vol 3, Iss , Pp 86-100 (2022)
In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more
Externí odkaz:
https://doaj.org/article/245240c804bc4689b55a0a32a83e1840
Publikováno v:
Artificial Intelligence in Geosciences, Vol 2, Iss , Pp 60-75 (2021)
In this study, we present a machine learning-based method to predict trace element concentrations from major and minor element concentration data using a legacy lithogeochemical database of magmatic rocks from the Karoo large igneous province (Gondwa
Externí odkaz:
https://doaj.org/article/b9684f172d3c466a8701cbcc3fa3f260
Publikováno v:
Artificial Intelligence in Geosciences, Vol 2, Iss , Pp 128-147 (2021)
Mineral exploration campaigns are financially risky. Several state-of-the-art methods have been developed to mitigate the risk, including predictive modelling of mineral prospectivity using principal component analysis (PCA) and geographic informatio
Externí odkaz:
https://doaj.org/article/2ff3b62c3ea9487e9d7d9b36193109af
Autor:
Steven E. Zhang, Glen T. Nwaila, Julie E. Bourdeau, Yousef Ghorbani, Emmanuel John M. Carranza
Publikováno v:
Natural Resources Research. 32:879-900
Machine-aided geological interpretation provides an opportunity for rapid and data-driven decision-making. In disciplines such as geostatistics, the integration of machine learning has the potential to improve the reliability of mineral resources and
Autor:
Glen T. Nwaila, Steven E. Zhang, Julie E. Bourdeau, Elekanyani Negwangwatini, Derek H. Rose, Mark Burnett, Yousef Ghorbani
Publikováno v:
Natural Resources Research. 31:2369-2395
The Assen Fe ore deposit is a banded iron formation (BIF)-hosted orebody, occurring in the Penge Formation of the Transvaal Supergroup, located 50 km northwest of Pretoria in South Africa. Most BIF-hosted Fe ore deposits have experienced post-deposit
Autor:
Sikelela Gomo, Moyagabo K. Rapetsoa, Musa S. D. Manzi, Emmanuel Onyebueke, Jureya Dildar, Mpofana Sihoyiya, Ndamulelo Mutshafa, Wesley Harrison, Julie E. Bourdeau, Oleg Brovko, Ian James, Gordon R. J. Cooper, Stephanie Scheiber, Raymond J. Durrheim
Publikováno v:
Geophysical Prospecting.
Autor:
Ndamulelo Mutshafa, Musa S.D. Manzi, Michael Westgate, Ian James, Bojan Brodic, Julie E. Bourdeau, Raymond J. Durrheim, Lindsay Linzer
Publikováno v:
Geophysical Prospecting.