Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Julie Desjardins"'
Autor:
Julie Desjardins
Publikováno v:
Tutorials in Quantitative Methods for Psychology, Vol 1, Iss 1, Pp 35-41 (2005)
La régression logistique se définit comme étant une technique permettant dajuster une surface de régression à des données lorsque la variable dépendante est dichotomique. Cette technique est utilisée pour des études ayant pour but de vérifi
Externí odkaz:
https://doaj.org/article/b4325bb3e3a94f56823ec91924590855
Autor:
Julie Desjardins
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 32:73-101
We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve $E$ by the rational values of a polynomial $f(T)$. In particular, we give a criterion (on $f$ depending on $E$) for the family
Autor:
Julie Desjardins
Publikováno v:
Acta Arithmetica
Let $\mathscr{E}\rightarrow\mathbb{P}^1_\mathbb{Q}$ be a non-trivial rational elliptic surface over $\mathbb{Q}$ with base $\mathbb{P}^1_\mathbb{Q}$ (with a section). We conjecture that any non-trivial elliptic surface has a Zariski-dense set of $\ma
Autor:
Julie Desjardins, Rosa Winter
Let $k$ be an infinite field of characteristic 0, and $X$ a del Pezzo surface of degree $d$ with at least one $k$-rational point. Various methods from algebraic geometry and arithmetic statistics have shown the Zariski density of the set $X(k)$ of $k
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dfcb66ecca31105615f077950a2d1d94
Publikováno v:
Perspectives en éducation et formation ISBN: 9782807333222
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c2a9e1a649cffa1e0a386d747dfd3b2
https://archive-ouverte.unige.ch/unige:155711
https://archive-ouverte.unige.ch/unige:155711
Autor:
Rena Chu, Julie Desjardins
Rizzo showed that the family of elliptic curves $\mathcal{W}(t) :y^2=x^3+tx^2-(t+3)x+1$, a well-known example of Washington, has root number $W(\mathcal{W}(t))=-1$ for all $t\in\mathbb{Z}$. In this paper we generalize this example and identify the fa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a9c424e4eef14b44d33f4ad574b84b0
Autor:
Julie Desjardins
Publikováno v:
Journal of the London Mathematical Society. 99:295-331
We show the density of rational points on non-isotrivial elliptic surfaces by studying the variation of the root numbers among the fibers of these surfaces, conditionally to two analytic number theory conjectures (the squarefree conjecture and Chowla