Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Juliana Angélica Estevão de Oliveira"'
Autor:
Luis Filipe Nakayama, Lucas Zago Ribeiro, Frederico Novaes, Isabele Ayumi Miyawaki, Andresa Emy Miyawaki, Juliana Angélica Estevão de Oliveira, Talita Oliveira, Fernando Korn Malerbi, Caio Vinicius Saito Regatieri, Leo Anthony Celi, Paolo S. Silva
Publikováno v:
Annals of Medicine, Vol 55, Iss 2 (2023)
AbstractPurpose This study aims to compare artificial intelligence (AI) systems applied in diabetic retinopathy (DR) teleophthalmology screening, currently deployed systems, fairness initiatives and the challenges for implementation.Methods The revie
Externí odkaz:
https://doaj.org/article/251fbcb129c448cda70f01f49d06f363
Autor:
Juliana Angélica Estevão de Oliveira, Luis Filipe Nakayama, Lucas Zago Ribeiro, Talita Virgínia Fernandes de Oliveira, Stefano Neto Jai Hyun Choi, Edgar Menezes Neto, Viviane Santos Cardoso, Sergio Atala Dib, Gustavo Barreto Melo, Caio Vinicius Saito Regatieri, Fernando Korn Malerbi
Publikováno v:
Acta Diabetologica.
Aims This study aims to compare the performance of a handheld fundus camera (Eyer) and standard tabletop fundus cameras (Visucam 500, Visucam 540, and Canon CR-2) for diabetic retinopathy and diabetic macular edema screening. Methods This was a multi
Autor:
Rodrigo Brant, Luis Filipe Nakayama, Talita Virgínia Fernandes de Oliveira, Juliana Angelica Estevão de Oliveira, Lucas Zago Ribeiro, Gabriela Dalmedico Richter, Rafael Rodacki, Fernando Marcondes Penha
Publikováno v:
International Journal of Retina and Vitreous, Vol 10, Iss 1, Pp 1-5 (2024)
Abstract Background Diabetic retinopathy (DR) stands as the foremost cause of preventable blindness in adults. Despite efforts to expand DR screening coverage in the Brazilian public healthcare system, challenges persist due to various factors includ
Externí odkaz:
https://doaj.org/article/5813a6ea4523467181d7394de7fd4698
Publikováno v:
eOftalmo. 8
Autor:
Luis Filipe Nakayama, Lucas Zago Ribeiro, Juliana Angelica Estevão de Oliveira, João Carlos Ramos Gonçalves de Matos, William Greig Mitchell, Fernando Korn Malerbi, Leo Anthony Celi, Caio Vinicius Saito Regatieri
Publikováno v:
International Journal of Retina and Vitreous, Vol 9, Iss 1, Pp 1-7 (2023)
Abstract Purpose In supervised Machine Learning algorithms, labels and reports are important in model development. To provide a normality assessment, the OCT has an in-built normative database that provides a color base scale from the measurement dat
Externí odkaz:
https://doaj.org/article/ea8702d9f4b649b285623e9d9e8f9a41