Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Julian Bailey"'
Autor:
Julian Bailey
Lord Justice Jackson's retirement in March 2018 concluded a career of almost 20 years on the bench. His judicial career has seen a remarkable transformation of construction law, construction law litigation and the litigation landscape more generally.
Autor:
Raeesa Rawal, Julian Bailey, Emma Knight, Therese Marie Rodgers, Vincent Rowan, Andrea Stauber, Martina Antosova, Emily Betts, Amy Held, Michael Levenstein, Tom Ames
Publikováno v:
Proceedings of the Institution of Civil Engineers - Management, Procurement and Law. 175:40-47
Publikováno v:
The Journal of Geometric Analysis. 33
We prove a quadratic sparse domination result for general non-integral square functions $S$. That is, we prove an estimate of the form \begin{equation*} \int_{M} (S f)^{2} g \, \mathrm{d}\mu \le c \sum_{P \in \mathcal{S}} \left(\frac{1}{\lvert 5P \rv
Publikováno v:
Construction Arbitration and Alternative Dispute Resolution ISBN: 9781003155973
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d3aa18a79c159e09b7521fa11bb51c6c
https://doi.org/10.4324/9781003155973-20
https://doi.org/10.4324/9781003155973-20
Autor:
Julian Bailey, Adam Sikora
We consider a class of non-doubling manifolds $\mathcal{M}$ that are the connected sum of a finite number of $N$-dimensional manifolds of the form $\mathbb{R}^{n_{i}} \times \mathcal{M}_{i}$. Following on from the work of Hassell and the second autho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c8f3e79413e066d0171fca09f583d51
http://arxiv.org/abs/2103.04087
http://arxiv.org/abs/2103.04087
Autor:
Julian Bailey
Publikováno v:
Revista de la Unión Matemática Argentina. :339-373
This paper constructs a Hardy–Littlewood type maximal operator adapted to the Schr¨odinger operator L := −∆ + |x| 2 acting on L2 (Rd). It achieves this through the use of the Gaussian grid ∆γ0, constructed by Maas, van Neerven, and Portal [
Autor:
Julian Bailey
Publikováno v:
Bulletin of the Australian Mathematical Society. 104:162-163
We prove that, for totally irregular measures μ on R d with d ≥ 3 , the ( d − 1 ) -dimensional Riesz transform T A , μ V f ( x ) = ∫ R d ∇ 1 E A V ( x , y ) f ( y ) d μ ( y ) adapted to the Schrodinger operator L A V = − div A ∇ + V wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1ee19df47240dc2e9860167b462308a
http://arxiv.org/abs/2001.05526
http://arxiv.org/abs/2001.05526
Autor:
Julian Bailey
Publikováno v:
Journal of Functional Analysis. 281:108996
Fix d ≥ 3 and 1 p ∞ . Let V : R d → [ 0 , ∞ ) belong to the reverse Holder class R H d / 2 and consider the Schrodinger operator L V : = − Δ + V . In this article, we introduce classes of weights w for which the Riesz transforms ∇ L V