Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Julia Q. D. Du"'
Autor:
Julia Q. D. Du, Dazhao Tang
Publikováno v:
International Journal of Number Theory. :1-18
The study of Andrews–Beck type congruences for partitions has its origin in the work by Andrews, who proved two congruences on the total number of parts in the partitions of [Formula: see text] with the Dyson rank, conjectured by George Beck. Recen
Autor:
JULIA Q. D. DU, DAZHAO TANG
Publikováno v:
Bulletin of the Australian Mathematical Society. :1-11
Let $Q(n)$ denote the number of partitions of n into distinct parts. Merca [‘Ramanujan-type congruences modulo 4 for partitions into distinct parts’, An. Şt. Univ. Ovidius Constanţa30(3) (2022), 185–199] derived some congruences modulo $4$ an
Autor:
Julia Q. D. Du
Publikováno v:
The Ramanujan Journal.
Publikováno v:
The Ramanujan Journal. 52:393-420
Let $p_k(n)$ be given by the $k$-th power of the Euler Product $\prod _{n=1}^{\infty}(1-q^n)^k=\sum_{n=0}^{\infty}p_k(n)q^{n}$. By investigating the properties of the modular equations of the second and the third order under the Atkin $U$-operator, w
Publikováno v:
International Journal of Number Theory. 15:1267-1290
We present a unified approach to establish infinite families of congruences for [Formula: see text] for arbitrary positive integer [Formula: see text], where [Formula: see text] is given by the [Formula: see text]th power of the Euler product [Formul
Publikováno v:
Trends in Mathematics ISBN: 9783030570491
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4058cbab90d933eb38da31a7437afdc0
https://doi.org/10.1007/978-3-030-57050-7_16
https://doi.org/10.1007/978-3-030-57050-7_16
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radu's algorithms, we present an algorithm to fin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f88f6279a2163390eebd757c218e3ec2