Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Julia Elyseeva"'
Autor:
Julia Elyseeva
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 95, Pp 1-12 (2015)
This paper studies transformations for conjoined bases of symplectic difference systems $Y_{i+1}=\mathcal S_{i}Y_{i}$ with the symplectic coefficient matrices $\mathcal S_i.$ For an arbitrary symplectic transformation matrix $P_{i}$ we formulate most
Externí odkaz:
https://doaj.org/article/71658985c3774d0694813a97cfed83ae
Autor:
Julia Elyseeva
Publikováno v:
Mathematische Nachrichten. 296:196-216
Autor:
Julia Elyseeva
Publikováno v:
Monatshefte für Mathematik. 193:305-328
In this paper we generalize comparison results for conjoined bases $$Y(t),{{\hat{Y}}}(t)$$ of two linear Hamiltonian differential systems proved by Elyseeva (J Math Anal Appl 444:1260–1273, 2016). In our consideration we do not impose classical mon
In this paper we present the theory of oscillation numbers and dual oscillation numbers for continuous Lagrangian paths in $\mathbb{R}^{2n}$. Our main results include a connection of the oscillation numbers of the given Lagrangian path with the Lidsk
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4fcfee28e1579c50aea50542bc8ca37
http://arxiv.org/abs/2107.01928
http://arxiv.org/abs/2107.01928
Autor:
Julia Elyseeva
Publikováno v:
Applied Mathematics Letters. 90:15-22
We consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with Dirichlet boundary conditions. In our consideration we do not impose any controllability and strict normality assumptions and o
Autor:
Julia Elyseeva
In this paper we establish new renormalized oscillation theorems for discrete symplectic eigenvalue problems with Dirichlet boundary conditions. These theorems present the number of finite eigenvalues of the problem in arbitrary interval $(a,b]$ usin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab289696c5082e2a6aaa0f964b58e126
Autor:
Roman Šimon Hilscher, Julia Elyseeva
Publikováno v:
Linear Algebra and its Applications. 558:108-145
In this paper we establish new oscillation theorems for discrete symplectic eigenvalue problems with general boundary conditions. We suppose that the symplectic coefficient matrix of the system and the boundary conditions are nonlinear functions of t
Autor:
Julia Elyseeva
Publikováno v:
Applied Mathematics and Computation. 330:185-200
In this paper we investigate mutual oscillatory behaviour of two linear differential Hamiltonian systems related via symplectic transformations. The main result extends our previous results in [30], where we presented new explicit relations connectin
Autor:
Julia Elyseeva
Publikováno v:
Applied Mathematics Letters. 68:33-39
In this paper we investigate oscillations of conjoined bases of linear Hamiltonian differential systems related via symplectic transformations. Both systems are considered without controllability (or normality) assumptions and under the Legendre cond
Publikováno v:
Pathways in Mathematics ISBN: 9783030193720
In this chapter we present basic theory of symplectic difference systems. We show that these systems incorporate as special cases many important equations or systems, such as the Sturm-Liouville difference equations, symmetric three-term recurrence e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08e829b3f8a875ede7130e8825170fdb
https://doi.org/10.1007/978-3-030-19373-7_2
https://doi.org/10.1007/978-3-030-19373-7_2