Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Juan Pablo Rivera Caicedo"'
Autor:
Mafalda Reis Pereira, Jochem Verrelst, Renan Tosin, Juan Pablo Rivera Caicedo, Fernando Tavares, Filipe Neves dos Santos, Mário Cunha
Publikováno v:
Agronomy, Vol 14, Iss 3, p 493 (2024)
Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its p
Externí odkaz:
https://doaj.org/article/8445b86576474d678955472c44c72c33
Autor:
Masoumeh Aghababaei, Ataollah Ebrahimi, Ali Asghar Naghipour, Esmaeil Asadi, Adrián Pérez-Suay, Miguel Morata, Jose Luis Garcia, Juan Pablo Rivera Caicedo, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 14, Iss 18, p 4452 (2022)
Accurate plant-type (PT) detection forms an important basis for sustainable land management maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images of the Copernicus program offer spatial, spectral, temporal, and r
Externí odkaz:
https://doaj.org/article/3ccc01f7b08040b9b35a550ecf57909d
Autor:
Gabriele Candiani, Giulia Tagliabue, Cinzia Panigada, Jochem Verrelst, Valentina Picchi, Juan Pablo Rivera Caicedo, Mirco Boschetti
Publikováno v:
Remote Sensing, Vol 14, Iss 8, p 1792 (2022)
In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This mission will provide an unprecedented amount of hyperspectral data, enabling new research possibilitie
Externí odkaz:
https://doaj.org/article/64ca091a600a4b2880ff5e7c635e80da
Autor:
Katja Berger, Juan Pablo Rivera Caicedo, Luca Martino, Matthias Wocher, Tobias Hank, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 13, Iss 2, p 287 (2021)
The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics p
Externí odkaz:
https://doaj.org/article/49789638de30419c8c0aef8e2d7eb8fc
Autor:
Jochem Verrelst, Juan Pablo Rivera Caicedo, Jorge Vicent, Pablo Morcillo Pallarés, José Moreno
Publikováno v:
Remote Sensing, Vol 11, Iss 2, p 157 (2019)
Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent an
Externí odkaz:
https://doaj.org/article/d8237f752d9b46888af851ba671b9439
Autor:
Jochem Verrelst, Juan Pablo Rivera Caicedo, Jordi Muñoz-Marí, Gustau Camps-Valls, José Moreno
Publikováno v:
Remote Sensing, Vol 9, Iss 9, p 927 (2017)
Progress in advanced radiative transfer models (RTMs) led to an improved understanding of reflectance (R) and sun-induced chlorophyll fluorescence (SIF) emission throughout the leaf and canopy. Among advanced canopy RTMs that have been recently modif
Externí odkaz:
https://doaj.org/article/ae85a6d39409400c9c28534ce6c6b0b6
Autor:
Jorge Vicent, José Estévez, Katja Berger, Juan Pablo Rivera-Caicedo, Jochem Verrelst, Matthias Wocher
Publikováno v:
Remote Sensing
Remote Sensing; Volume 13; Issue 8; Pages: 1589
Remote Sensing, Vol 13, Iss 1589, p 1589 (2021)
Remote Sensing; Volume 13; Issue 8; Pages: 1589
Remote Sensing, Vol 13, Iss 1589, p 1589 (2021)
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and bi
Autor:
José Estévez, Matías Salinero-Delgado, Katja Berger, Luca Pipia, Juan Pablo Rivera-Caicedo, Matthias Wocher, Pablo Reyes-Muñoz, Giulia Tagliabue, Mirco Boschetti, Jochem Verrelst
Publikováno v:
José Estévez, Matías Salinero-Delgado, Katja Berger, Luca Pipia, Juan Pablo Rivera-Caicedo, Matthias Wocher, Pablo Reyes-Muñoz, Giulia Tagliabue, Mirco Boschetti, Jochem Verrelst (2022). Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sensing of Environment, 273, 112958.
Remote Sensing of Environment
Remote Sensing of Environment
The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval mod
Autor:
Pablo Morcillo-Pallarés, Jose Moreno, Maria Lumbierres, Jochem Verrelst, Juan Pablo Rivera-Caicedo, Jorge Vicent
Publikováno v:
Remote Sensing; Volume 11; Issue 16; Pages: 1923
Remote Sensing, Vol 11, Iss 16, p 1923 (2019)
Remote Sensing
Remote Sensing, Vol 11, Iss 16, p 1923 (2019)
Remote Sensing
Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmospher
Autor:
Eatidal Amin, Luca Pipia, Antonio Ruiz-Verdú, Juan Pablo Rivera-Caicedo, Jose Moreno, Jochem Verrelst
Publikováno v:
Remote Sensing of Environment
For agricultural applications, identification of non-photosynthetic above-ground vegetation is of great interest as it contributes to assess harvest practices, detecting crop residues or drought events, as well as to better predict the carbon, water