Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Juan L. Varona"'
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::076a8162d329947468200e08e0aee48b
https://investigacion.unirioja.es/documentos/61e2ffdc1db4736e1e982edc
https://investigacion.unirioja.es/documentos/61e2ffdc1db4736e1e982edc
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
We prove a partial fraction decomposition of a quotient of two functions E α ( i t x ) and I α ( i t ) which are defined in terms of the Bessel functions J α and J α + 1 of the first kind. This expansion leads naturally to the introduction of an
Autor:
Andrew N.W. Hone, Juan L. Varona
Publikováno v:
Acta Arithmetica.
An Engel series is a sum of reciprocals ∑j≥1 1/x_j of a non-decreasing sequence of positive integers x_n with the property that x_n divides x_{n+1} for all n≥1. In_ previous work, we have shown that for any Engel series with the stronger proper
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2012 (2012)
The Bernoulli polynomials Bk restricted to [0,1) and extended by periodicity have nth sine and cosine Fourier coefficients of the form Ck/nk. In general, the Fourier coefficients of any polynomial restricted to [0,1) are linear combinations of terms
Externí odkaz:
https://doaj.org/article/5783b75e980d4af0a36256dbfcbed252
Autor:
Juan L. Varona, Andrew N.W. Hone
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
An Engel series is a sum of reciprocals of a non-decreasing sequence $$(x_n)$$ of positive integers, which is such that each term is divisible by the previous one, and a Pierce series is an alternating sum of the reciprocals of a sequence with the sa
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
We show that there is a large class of Appell sequences { P n ( x ) } n = 0 ∞ for which there is a function F ( s , x ) , entire in s for fixed x with Re x > 0 and satisfying F ( − n , x ) = P n ( x ) for n = 0 , 1 , 2 , … . For example, in the
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ad3c5503d596f4cb128edf5a84bc916
https://investigacion.unirioja.es/documentos/5d959e6e2999525d7e948457
https://investigacion.unirioja.es/documentos/5d959e6e2999525d7e948457
Publikováno v:
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in L-p does not converge unless p = 2. As a by-product of our work on quasi-greedy bases in L-p(µ), we show that no normalized uncon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ce2f0839587109d65610754766e089b
https://hdl.handle.net/2454/35946
https://hdl.handle.net/2454/35946
Publikováno v:
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
instname
We obtain some well-known expansions for the Lerch transcendent and the Hurwitz zeta function using elementary Fourier analytic methods. These Fourier series can be used to analytically continue the functions and prove the classical functional equati
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
RIUR. Repositorio Institucional de la Universidad de La Rioja
The analysis of nonlocal discrete equations driven by fractional powers of the discrete Laplacian on a mesh of size $h>0$ \[ (-\Delta_h)^su=f, \] for $u,f:\mathbb{Z}_h\to\mathbb{R}$, $0
Comment: 39 pages. Submitted on 08/31/2016 and accepted on
Comment: 39 pages. Submitted on 08/31/2016 and accepted on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7c18d0a4999defe32b0d9d7e21d8e67
http://hdl.handle.net/20.500.11824/922
http://hdl.handle.net/20.500.11824/922