Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Juan J. Moreno Balcázar"'
Publikováno v:
Journal of Difference Equations and Applications. 28:971-989
Publikováno v:
East Asian Journal on Applied Mathematics. 12:535-563
Publikováno v:
Mathematics, Vol 8, Iss 2, p 182 (2020)
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential opera
Externí odkaz:
https://doaj.org/article/a6a9041de3e3423d8572fb6c9981815e
Autor:
José María Calaforra, Emilio Guirado, Juan J. Moreno-Balcázar, Ana D. Maldonado, Darío Ramos-López
Publikováno v:
Journal for Nature Conservation. 49:76-84
Caves are generally very stable spaces, but easily alterable from the environmental point of view. In show caves, the geochemical rock-atmosphere interface in carbonate karst caves can be affected by tourism. In this regard, the influence of tourism
Publikováno v:
Journal of Approximation Theory. 230:32-49
We consider the following discrete Sobolev inner product involving the Gegenbauer weight ( f , g ) S ≔ ∫ − 1 1 f ( x ) g ( x ) ( 1 − x 2 ) α d x + M [ f ( j ) ( − 1 ) g ( j ) ( − 1 ) + f ( j ) ( 1 ) g ( j ) ( 1 ) ] , where α > − 1 , j
We consider the discrete Sobolev inner product $$(f,g)_S=\int f(x)g(x)d��+Mf^{(j)}(c)g^{(j)}(c), \quad j\in \mathbb{N}\cup\{0\}, \quad c\in\mathbb{R}, \quad M>0, $$ where $��$ is a classical continuous measure with support on the real line (J
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52d1df6c2cd2e2d30b83b38af06917db
http://arxiv.org/abs/1907.13226
http://arxiv.org/abs/1907.13226
Autor:
Ainhoa Berciano Alcaraz, Vanesa Calero Blanco, Natàlia Castellana Vila, Aída Inmaculada Conejo Pérez, Manuel de León Rodríguez, Irene Ferrando Palomares, Miguel Ángel Mirás Calvo, Juan J. Moreno Balcázar, Edith Padrón Fernández, Carmen Quinteiro Sandomingo, María José Souto Salorio, Ana Dorotea Tarrío Tobar, María Teresa Valdecantos Dema, Amelia Verdejo Rodríguez, Marta Macho Stadler
Muchas mujeres que se han dedicado a la ciencia, en particular a las matemáticas, son poco conocidas y reconocidas. Sin embargo, han realizado grandes aportaciones al álgebra, a la geometría o al cálculo, por citar algunas disciplinas. Probablem
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Me
Publikováno v:
Notices of the American Mathematical Society. 64:873-875
The Krein-like $r$-functionals of the hypergeometric orthogonal polynomials $\{p_{n}(x) \}$ with kernel of the form $x^{s}[\omega(x)]^{\beta}p_{m_{1}}(x)\ldots p_{m_{r}}(x)$, being $\omega(x)$ the weight function on the interval $\Delta\in\mathbb{R}$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c9b3d6b54ad00a7e7e14131fa6c1708