Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Juan J. Font"'
Autor:
Juan J. Font, Sergio Macario
Publikováno v:
Axioms, Vol 12, Iss 2, p 192 (2023)
In this paper, we study the best approximation of a fixed fuzzy-number-valued continuous function to a subset of fuzzy-number-valued continuous functions. We also introduce a method to measure the distance between a fuzzy-number-valued continuous fun
Externí odkaz:
https://doaj.org/article/f0ca91704a6a4d668f17e55c7a425855
Publikováno v:
Mathematics, Vol 11, Iss 2, p 260 (2023)
In this paper, we provide several Arzelà–Ascoli-type results on the space of all continuous functions from a Tychonoff space X into the fuzzy sets of Rn, (FUSCB(Rn),Hend), which are upper semi-continuous and have bounded support endowed with the e
Externí odkaz:
https://doaj.org/article/5d81d187288241bb8eee214838b3d9d6
Autor:
Sergio Macario, Juan J. Font
Publikováno v:
Repositori Universitat Jaume I
Universitat Jaume I
Universitat Jaume I
In this paper we present a Stone-Weierstrass type result in the context of continuous interval-valued functions defined on a compact Hausdorff space. We also provide a Jackson type approximation result involving the modulus of continuity of interval-
Autor:
Juan J. Font, Maliheh Hosseini
In this paper we give a complete description of local and 2-local isometries defined between spaces of scalar-valued absolutely continuous functions on arbitrary (not necessarily compact) subsets of the real line with at least two points.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::855f4caeb1c2b73cce8e0a0125c39e7f
Publikováno v:
Repositori Universitat Jaume I
Universitat Jaume I
Universitat Jaume I
We consider the space of continuous functions defined between a locally compact Hausdorff space and the space of fuzzy numbers endowed with the level convergence topology. We obtain a Stone-Weierstrass type theorem for such space of functions equippe
Autor:
Juan J. Font, Maliheh Hosseini
Publikováno v:
Mediterranean Journal of Mathematics. 18
Both classical linear and multilinear isometries defined between subalgebras of bounded continuous functions on (complete) metric spaces are studied. Particularly, we prove that certain such subalgebras, including the subalgebras of uniformly continu
Autor:
Juan J. Font, Maliheh Hosseini
Publikováno v:
Quaestiones Mathematicae; Vol 43, No 1 (2020); 67-80
Repositori Universitat Jaume I
Universitat Jaume I
Repositori Universitat Jaume I
Universitat Jaume I
In this paper we study nonlinear diameter preserving mappings defined between function spaces and obtain generalizations of, basically, all known results concerning diameter preservers. In particular, we give a complete description for algebras of co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15c6ae9f27b66df8d189f7e5ee5694f3
Autor:
Maliheh Hosseini, Juan J. Font
Publikováno v:
Repositori Universitat Jaume I
Universitat Jaume I
Universitat Jaume I
Let G be a locally compact abelian group and B be a commutative Banach algebra. Let $$L^{1}(G, B)$$ be the Banach algebra of B-valued Bochner integrable functions on G. In this paper we provide a complete description of continuous disjointness preser
Autor:
Juan J. Font, Maliheh Hosseini
Publikováno v:
Repositori Universitat Jaume I
Universitat Jaume I
Universitat Jaume I
In this paper we study multilinear isometries defined on certain subspaces of vector-valued continuous functions. We provide conditions under which such maps can be properly represented. Our results contain all known results concerning linear and bil
Autor:
Juan J. Font, Maliheh Hosseini
Publikováno v:
Repositori Universitat Jaume I
Universitat Jaume I
Universitat Jaume I
In this paper we deal with surjective linear isometries between spaces of scalar-valued absolutely continuous functions on arbitrary (not necessarily closed or bounded) subsets of the real line (with at least two points). As a corollary, it is shown