Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Juan Cuadra"'
Autor:
Ehud Meir, Juan Cuadra
Publikováno v:
Journal of the London Mathematical Society. 100:137-158
We prove the non-existence of Hopf orders over number rings for two families of complex semisimple Hopf algebras. They are constructed as Drinfel'd twists of group algebras for the following groups: $A_n$, the alternating group on $n$ elements, with
Autor:
Juan Cuadra, Ehud Meir
Publikováno v:
Journal of Noncommutative Geometry. 11:919-955
Let $p$ be an odd prime number and $K$ a number field having a primitive $p$-th root of unity $\zeta.$ We prove that Nikshych's non-group theoretical Hopf algebra $H_p$, which is defined over $\mathbb{Q}(\zeta)$, admits a Hopf order over the ring of
Autor:
Juan Cuadra, Ehud Meir
Publikováno v:
Transactions of the American Mathematical Society. 368:2547-2562
We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfel'd twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability
Autor:
Juan Cuadra Pérez
Segunda parte de «La saga de la Ciudad», iniciada con El libro de Ivo, una serie que se adentra de forma magistral en el mundo de los sueños y las pesadillas, las perversiones y los miedos. Imagina un lugar donde todo está permitido. TODO. Vuelve
Publikováno v:
Journal of Algebra. 319:5165-5177
Let k be any field. We consider the Hopf–Schur group of k, defined as the subgroup of the Brauer group of k consisting of classes that may be represented by homomorphic images of finite-dimensional Hopf algebras over k. We show here that twisted gr
Autor:
Juan Cuadra Pérez
Para los que echáis de menos títulos de terror realmente adulto. Para los que sabéis que la magia se construye con rituales de sangre y no con varitas mágicas. Pala todos vosotros: bienvenidos a la Ciudad. En una ciudad sin nombre, un hombre anó
Autor:
Daniel Simson, Juan Cuadra
Publikováno v:
Communications in Algebra. 35:3164-3194
Stenstrom introduced the notion of flat object in a locally finitely presented Grothendieck category 𝒜. In this article we investigate this notion in the particular case of the category 𝒜 = C-Comod of left C-comodules, where C is a coalgebra ov
Autor:
Juan Cuadra, José Gómez-Torrecillas
Publikováno v:
Journal of Algebra. 308(1):178-198
The Jacobson–Bourbaki Theorem for division rings was formulated in terms of corings by Sweedler in [M.E. Sweedler, The predual theorem to the Jacobson–Bourbaki Theorem, Trans. Amer. Math. Soc. 213 (1975) 391-406]. Finiteness conditions hypotheses
Autor:
Juan Cuadra, Pavel Etingof
Publikováno v:
arXiv
Let $\mathbb{k}$ be an algebraically closed field of characteristic zero. Let $D$ be a division algebra of degree $d$ over its center $Z(D)$. Assume that $\mathbb{k}\subset Z(D)$. We show that a finite group $G$ faithfully grades $D$ if and only if $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8746a34512efd1284958bab63ce52151
http://hdl.handle.net/1721.1/115878
http://hdl.handle.net/1721.1/115878
Publikováno v:
arXiv
We study actions of semisimple Hopf algebras H on Weyl algebras A over an algebraically closed field of characteristic zero. We show that the action of H on A must factor through a group action; in other words, if H acts inner faithfully on A, then H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2ffad05ff98c80854a1099b165b836c
http://hdl.handle.net/1721.1/111128
http://hdl.handle.net/1721.1/111128