Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Juan Carlos Álvarez Paiva"'
Publikováno v:
Pattern Recognition. ICPR International Workshops and Challenges ISBN: 9783030687793
ICPR Workshops (6)
ICPR Workshops (6)
In this paper we propose a new family of metrics on the manifold of oriented ellipses centered at the origin in Euclidean n-space, the double cover of the manifold of positive semi-definite matrices of rank two, in order to measure similarities betwe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4eeba80ee1a0437e236dab60cf89fa8f
https://doi.org/10.1007/978-3-030-68780-9_18
https://doi.org/10.1007/978-3-030-68780-9_18
Publikováno v:
Computers & Graphics: X
Computers & Graphics: X, 2022, 102 (45-55)
Computers & Graphics: X, 2021, ⟨10.1016/j.cag.2021.10.012⟩
Computers & Graphics: X, 2022, 102 (45-55)
Computers & Graphics: X, 2021, ⟨10.1016/j.cag.2021.10.012⟩
We analyze human poses and motion by introducing three sequences of easily calculated surface descriptors that are invariant under reparametrizations and Euclidean transformations. These descriptors are obtained by associating to each finitely-triang
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d5ee4e803aebea9b1ba98da7f9e3f93
Autor:
Juan Carlos Álvarez Paiva
Publikováno v:
Differential and Symplectic Topology of Knots and Curves. :1-21
Autor:
Juan Carlos, Álvarez Paiva
Publikováno v:
J. Differential Geom.
J. Differential Geom., 2005, 69 n°2, pp.353--378
J. Differential Geom., 2005, 69 n°2, pp.353--378
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::984d49d5badb819712c6d1d5088a2170
https://hal.science/hal-00015621
https://hal.science/hal-00015621
Autor:
Juan Carlos Álvarez Paiva
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 4, no. 3 (1997), 373-377
The proofs and applications are based on a Riemannian version of Gromov’s non-squeezing theorem and classical integral geometry. Given a convex surface Σ ⊂ R and a point q in the unit sphere S we denote by UΣ(q) the perimeter of the orthogonal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf7edfe826456be687997f308180b7f8
http://projecteuclid.org/euclid.bbms/1105733253
http://projecteuclid.org/euclid.bbms/1105733253