Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Juan B. Gil"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 24, no. 1, Iss Combinatorics (2022)
Motivated by the study of pattern avoidance in the context of permutations and ordered partitions, we consider the enumeration of weak-ordering chains obtained as leaves of certain restricted rooted trees. A tree of order $n$ is generated by insertin
Externí odkaz:
https://doaj.org/article/fed2162cf12a4dd29579c16765f87602
Autor:
Juan B. Gil, Jessica A. Tomasko
Publikováno v:
Enumerative Combinatorics and Applications, Vol 2, Iss 4, p Article #S4PP6 (2022)
Externí odkaz:
https://doaj.org/article/2a967b5dc94947b8ae158b944ab7bd09
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AT,..., Iss Proceedings (2014)
Given an odd prime p, we give an explicit factorization over the ring of formal power series with integer coefficients for certain reducible polynomials whose constant term is of the form $p^w$ with $w>1$. Our formulas are given in terms of partial B
Externí odkaz:
https://doaj.org/article/e8e96fb3e8cf486e873586228ec9f226
Publikováno v:
Journal of Combinatorics. 9:221-232
For a given integer $d\ge 1$, we consider $\binom{n+d-1}{d}$-color compositions of a positive integer $\nu$ for which each part of size $n$ admits $\binom{n+d-1}{d}$ colors. We give explicit formulas for the enumeration of such compositions, generali
Autor:
Juan B. Gil, Michael D. Weiner
Publikováno v:
Trends in Mathematics ISBN: 9783030570491
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d5bef52efc5b0cb33f61679ebb5f0a2a
https://doi.org/10.1007/978-3-030-57050-7_25
https://doi.org/10.1007/978-3-030-57050-7_25
Autor:
Jordan Olliver Tirrell, Juan B. Gil
Publikováno v:
Discrete Mathematics. 343:111705
In this note, we give a simple extension map from partitions of subsets of [ n ] to partitions of [ n + 1 ] , which sends δ -distant k -crossings to ( δ + 1 ) -distant k -crossings (and similarly for nestings). This map provides a combinatorial pro
Publikováno v:
Lattice Path Combinatorics and Applications ISBN: 9783030111014
We consider a class of lattice paths with certain restrictions on their ascents and down-steps and use them as building blocks to construct various families of Dyck paths. We let every building block \(P_j\) take on \(c_j\) colors and count all of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7cee1d27eabf4a7c94fcbaceef58116
https://doi.org/10.1007/978-3-030-11102-1_8
https://doi.org/10.1007/978-3-030-11102-1_8
Autor:
Juan B. Gil, Michael D. Weiner
The class of permutations that avoid the bivincular pattern (231, {1},{1}) is known to be enumerated by the Fishburn numbers. In this paper, we call them Fishburn permutations and study their pattern avoidance. For classical patterns of size 3, we gi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::018d11d7511c1172180084f7d8106391
http://arxiv.org/abs/1812.01682
http://arxiv.org/abs/1812.01682
We study a class of rational Dyck paths with slope (2m+1)/2 corresponding to factor-free Dyck words, as introduced by P. Duchon. We show that, for the slopes considered in this paper, the language of factor-free Dyck words is generated by an auxiliar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d6fb414d5f9bd919e2418f0d0b783f22
We introduce a family of sequence transformations, defined via partial Bell polynomials, that may be used for a systematic study of a wide variety of problems in enumerative combinatorics. This family includes some of the transformations listed in th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ece118859fd3f2a539d6da7639885775