Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Jozefien D'haeseleer"'
Autor:
Jozefien D’haeseleer
Publikováno v:
Advances in Geometry. 23:1-24
In this article, we analyse maximal sets of k-spaces, in PG(n, q) and AG(n, q) with n ≥ 2k + t + 3, that pairwise meet in at least a t-space. It is known that for both PG(n, q) and AG(n, q), the largest example is a t-pencil, i.e. the set of all k-
Publikováno v:
The Electronic Journal of Combinatorics
We investigate the existence of Boolean degree $d$ functions on the Grassmann graph of $k$-spaces in the vector space $\mathbb{F}_q^n$. For $d=1$ several non-existence and classification results are known, and no non-trivial examples are known for $n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b0f67cb18f4e8e2b927f5ceb6d6d7a5
https://doi.org/10.37236/11040
https://doi.org/10.37236/11040
Publikováno v:
Journal of Combinatorial Designs
We determine the chromatic number of the Kneser graph q{\Gamma}_{7,{3,4}} of flags of vectorial type {3, 4} of a rank 7 vector space over the finite field GF(q) for large q and describe the colorings that attain the bound. This result relies heavily,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d95c0a43898566e283e4bbd43fadd3d
https://hdl.handle.net/1854/LU-01H25F2DBECKYTBFED5R66NYS6
https://hdl.handle.net/1854/LU-01H25F2DBECKYTBFED5R66NYS6
Publikováno v:
DESIGNS CODES AND CRYPTOGRAPHY
A t-intersecting constant dimension subspace code C is a set of k-dimensional subspaces in a projective space $$\mathrm {PG}(n,q)$$ , where distinct subspaces intersect in exactly a t-dimensional subspace. A classical example of such a code is the su
Publikováno v:
DESIGNS CODES AND CRYPTOGRAPHY
Designs, Codes and Cryptography, 90(9), 2003-2019. Springer
Designs, Codes and Cryptography, 90(9), 2003-2019. Springer
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this paper we give some sufficient and necessary conditions for a Neumaier graph to be strongly regular. Further we show that there does not exist Neumaier graphs w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ab17d84bd68783cdb5f3ee56bb6ccbe
https://biblio.ugent.be/publication/8712520/file/8716605
https://biblio.ugent.be/publication/8712520/file/8716605
Publikováno v:
The Electronic Journal of Combinatorics. 28
We study Cameron-Liebler $k$-sets in the affine geometry, so sets of $k$-spaces in $\mathrm{AG}(n,q)$. This generalizes research on Cameron-Liebler $k$-sets in the projective geometry $\mathrm{PG}(n,q)$. Note that in algebraic combinatorics, Cameron-
Autor:
Jozefien D'haeseleer, Nicola Durante
Publikováno v:
The Electronic Journal of Combinatorics. 27
Let $V$ be a $(d+1)$-dimensional vector space over a field $\mathbb{F}$. Sesquilinear forms over $V$ have been largely studied when they are reflexive and hence give rise to a (possibly degenerate) polarity of the $d$-dimensional projective space $\m
We determine the chromatic number of some graphs of flags in buildings of type $A_4$, namely of the Kneser graphs of flags of type $\{2,4\}$ in the vector spaces $GF(q)^5$ for $q\geq3$, and of the Kneser graph of flags of type $\{2,3\}$ in the vector
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c1435155f0876b1aa4b0d84393c01a9
http://arxiv.org/abs/2005.05762
http://arxiv.org/abs/2005.05762
Publikováno v:
ELECTRONIC JOURNAL OF COMBINATORICS
In this paper, we analyze the structure of maximal sets of $k$-dimensional spaces in $\mathrm{PG}(n,q)$ pairwise intersecting in at least a $(k-2)$-dimensional space, for $3 \leq k\leq n-2$. We give an overview of the largest examples of these sets w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41e7db076c352f9b375874e476391ebe
http://arxiv.org/abs/2005.05494
http://arxiv.org/abs/2005.05494
Autor:
Jozefien D'haeseleer, Nicola Durante
Publikováno v:
ELECTRONIC JOURNAL OF COMBINATORICS
Let $V$ be a $(d+1)$-dimensional vector space over a field $\mathbb{F}$. Sesquilinear forms over $V$ have been largely studied when they are reflexive and hence give rise to a (possibly degenerate) polarity of the $d$-dimensional projective space PG$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37d410a9700b3dc94b99554c0866bad9