Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Jozef Džurina"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-21 (2022)
Abstract In this paper, we present a single-condition sharp criterion for the oscillation of the fourth-order linear delay differential equation x ( 4 ) ( t ) + p ( t ) x ( τ ( t ) ) = 0 $$ x^{(4)}(t) + p(t)x\bigl(\tau (t)\bigr) = 0 $$ by employing
Externí odkaz:
https://doaj.org/article/022eb5b74ab94ce2ad13b279be247dd5
Autor:
Jozef Džurina, Blanka Baculíková
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2022, Iss 10, Pp 1-8 (2022)
This paper is devoted to the study of the oscillatory behavior of half-linear functional differential equations with deviating argument of the form \begin{equation*}\label{Eabs} \left(r(t)(y'(t))^{\alpha}\right)'=p(t)y^{\alpha}(\tau(t)). \tag{$E$}
Externí odkaz:
https://doaj.org/article/99cf0e53eb694510ae11c39b82341687
Autor:
Blanka Baculíková, Jozef Džurina
Publikováno v:
Opuscula Mathematica, Vol 40, Iss 5, Pp 523-536 (2020)
In the paper, we study oscillation of the half-linear second order delay differential equations of the form \[\left(r(t)(y'(t))^{\alpha}\right)'+p(t)y^{\alpha}(\tau(t))=0.\] We introduce new monotonic properties of its nonoscillatory solutions and us
Externí odkaz:
https://doaj.org/article/f62ac94cc31842fb8ed9e141e771ee73
Autor:
Jozef Džurina, Irena Jadlovská
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 46, Pp 1-14 (2020)
In the paper, new single-condition criteria for the oscillation of all solutions to a second-order half-linear delay differential equation in noncanonical form are obtained, relaxing a traditionally posed assumption that the delay function is nondecr
Externí odkaz:
https://doaj.org/article/4756c676ce444f32b0a7ae2118704379
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-15 (2019)
Abstract In the paper, fourth-order delay differential equations of the form (r3(r2(r1y′)′)′)′(t)+q(t)y(τ(t))=0 $$ \bigl(r_{3} \bigl(r_{2} \bigl(r_{1}y' \bigr)' \bigr)' \bigr)'(t) + q(t) y \bigl( \tau (t) \bigr) = 0 $$ under the assumption
Externí odkaz:
https://doaj.org/article/90ebec9f7cf74a35b809cfd3cf1c403d
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 7, Pp 1-11 (2019)
The purpose of the paper is to show that the canonical operator $L_3$ given by $$L_3(\cdot) = \left(r_2\left(r_1(\cdot)'\right)'\right)'$$ where the functions $r_i(t)\in \mathcal{C}([t_0,\infty), [0,\infty))$ satisfy \[ \int_{t_0}^{\infty}\frac{\math
Externí odkaz:
https://doaj.org/article/d475c7d5602043679c5061ba687604c0
Publikováno v:
Opuscula Mathematica, Vol 39, Iss 4, Pp 483-495 (2019)
The main purpose of this paper is to improve recent oscillation results for the second-order half-linear delay differential equation \[\left(r(t)\left(y'(t)\right)^\gamma\right)'+q(t)y^\gamma(\tau(t))= 0, \quad t\geq t_0,\] under the condition \[\int
Externí odkaz:
https://doaj.org/article/3f56677f2ce24499986ddd6dc56d49f3
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-13 (2018)
Abstract The paper is devoted to the study of oscillation of solutions to a class of second-order half-linear neutral differential equations with delayed arguments. New oscillation criteria are established, and they essentially improve the well-known
Externí odkaz:
https://doaj.org/article/05a8a0dfc2834e2bbec9702c227a46dc
Autor:
Jozef Džurina
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 20, Pp 1-9 (2018)
We establish a new technique for deducing oscillation of the second order advanced differential equation \begin{equation*} \left(r(t)u'(t)\right)'+p(t)u(\sigma(t))=0 \end{equation*} with help of a suitable equation of the form $$ \left(r(t)u'(t)\righ
Externí odkaz:
https://doaj.org/article/637a127c27df4181ade8c210fc57eef5
Publikováno v:
Mathematics, Vol 9, Iss 14, p 1675 (2021)
In this paper, effective oscillation criteria for third-order delay differential equations of the form, r2r1y′′′(t)+q(t)y(τ(t))=0 ensuring that any nonoscillatory solution tends to zero asymptotically, are established. The results become sharp
Externí odkaz:
https://doaj.org/article/30fcb9f424d748cb903eeaeafde203d0