Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Joy T. Wu"'
Publikováno v:
EBioMedicine, Vol 90, Iss , Pp 104525- (2023)
Externí odkaz:
https://doaj.org/article/ba3bd3f31b9249b4a77a3a3ddfed8881
Autor:
Alexandros Karargyris, Satyananda Kashyap, Ismini Lourentzou, Joy T. Wu, Arjun Sharma, Matthew Tong, Shafiq Abedin, David Beymer, Vandana Mukherjee, Elizabeth A. Krupinski, Mehdi Moradi
Publikováno v:
Scientific Data, Vol 8, Iss 1, Pp 1-18 (2021)
Measurement(s) chest X-ray image • radiologist’s dictation audio data • radiologist’s eye gaze coordinates data Technology Type(s) eye tracking device • machine learning • Radiologist • Chest Radiography Sample Characteristic - Organism
Externí odkaz:
https://doaj.org/article/e806c972d90d404d83909fd6318594f6
Autor:
Sebastian Gehrmann, Franck Dernoncourt, Yeran Li, Eric T Carlson, Joy T Wu, Jonathan Welt, John Foote, Edward T Moseley, David W Grant, Patrick D Tyler, Leo A Celi
Publikováno v:
PLoS ONE, Vol 13, Iss 2, p e0192360 (2018)
In secondary analysis of electronic health records, a crucial task consists in correctly identifying the patient cohort under investigation. In many cases, the most valuable and relevant information for an accurate classification of medical condition
Externí odkaz:
https://doaj.org/article/d82b7faa2db74d648f55be4f1af0d16e
Autor:
Gaurang Karwande, Amarachi B. Mbakwe, Joy T. Wu, Leo A. Celi, Mehdi Moradi, Ismini Lourentzou
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164309
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9ba5985b8a823e5aa154ceb7140ec566
https://doi.org/10.1007/978-3-031-16431-6_55
https://doi.org/10.1007/978-3-031-16431-6_55
Publikováno v:
AMIA Annu Symp Proc
The application of deep learning algorithms in medical imaging analysis is a steadily growing research area. While deep learning methods are thriving in the medical domain, they seldom utilize the rich knowledge associated with connected radiology re
Autor:
Joy T, Wu, Ali, Syed, Hassan, Ahmad, Anup, Pillai, Yaniv, Gur, Ashutosh, Jadhav, Daniel, Gruhl, Linda, Kato, Mehdi, Moradi, Tanveer, Syeda-Mahmood
Publikováno v:
AMIA Annu Symp Proc
Rule-based Natural Language Processing (NLP) pipelines depend on robust domain knowledge. Given the long tail of important terminology in radiology reports, it is not uncommon for standard approaches to miss items critical for understanding the image
Autor:
Arjun Sharma, Shafiq Abedin, Vandana Mukherjee, Ismini Lourentzou, Alexandros Karargyris, Matthew H. Tong, Mehdi Moradi, David Beymer, Elizabeth A. Krupinski, Satyananda Kashyap, Joy T. Wu
Publikováno v:
Scientific Data
Scientific Data, Vol 8, Iss 1, Pp 1-18 (2021)
Scientific Data, Vol 8, Iss 1, Pp 1-18 (2021)
We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. The data were collected using an eye-tracking system while a radiologist reviewed and reported on 1,083 CXR images. The dataset contains the f
Autor:
Mehdi Moradi, Orest B. Boyko, Alexandros Karargyris, Tanveer Syeda-Mahmood, Joy T. Wu, Ali Bin Syed, Yaniv Gur
Publikováno v:
ISBI
Automatic detection of findings and their locations in chest x-ray studies is an important research area for AI application in healthcare. Whereas for finding classification tasks image-level labeling suffices, additional annotation in the form of bo
Autor:
Joy T. Wu, Alexandros Karargyris, Arjun Sharma, Ken C. L. Wong, Yaniv Gur, Mehdi Moradi, Satyananda Kashyap, Tanveer Syeda-Mahmood
Publikováno v:
ISBI
Deep learning has now become the de facto approach to the recognition of anomalies in medical imaging. Their 'black box' way of classifying medical images into anomaly labels poses problems for their acceptance, particularly with clinicians. Current
Autor:
Ali Bin Syed, Tanveer Syeda-Mahmood, Arjun Sharma, Yaniv Gur, Ken C. L. Wong, Satyananda Kashyap, Mehdi Moradi, Joy T. Wu, Orest B. Boyko, Anup Pillai, Alexandros Karargyris, Ashutosh Jadhav
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 ISBN: 9783030597122
MICCAI (2)
MICCAI (2)
Obtaining automated preliminary read reports for common exams such as chest X-rays will expedite clinical workflows and improve operational efficiencies in hospitals. However, the quality of reports generated by current automated approaches is not ye
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3775d220fd6322245e75cf264c1d5839
https://doi.org/10.1007/978-3-030-59713-9_54
https://doi.org/10.1007/978-3-030-59713-9_54