Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Jotsaroop, K."'
For Grushin vector fields, we prove Hardy, Hardy-Rellich, and Rellich identities and inequalities with sharp constants. Our explicit remainder terms significantly improve those found in the literature. Our arguments build on abstract Hardy-Rellich id
Externí odkaz:
http://arxiv.org/abs/2404.05510
In this paper we introduce Stein's square function associated with bilinear Bochner-Riesz means and investigate its $L^p$ boundedness properties. Further, we discuss several applications of the square function in the context of bilinear multipliers.
Externí odkaz:
http://arxiv.org/abs/2107.00840
Autor:
Jotsaroop, K., Gigante, Giacomo
We show asymptotic expansions of the eigenfunctions of certain perturbations of the Jacobi operator in a bounded interval, deducing equiconvergence results between expansions with respect to the associated orthonormal basis and expansions with respec
Externí odkaz:
http://arxiv.org/abs/2011.01642
In this paper we establish weighted estimates for the bilinear Bochner-Riesz operator $\mathcal B^{\alpha}$ at the critical index $\alpha=n-\frac{1}{2}$ with respect to bilinear weights.
Externí odkaz:
http://arxiv.org/abs/2007.09415
Autor:
Jotsaroop, K., Shrivastava, Saurabh
In this paper we investigate the boundedness properties of bilinear multiplier operators associated with unimodular functions of the form $m(\xi,\eta)=e^{i \phi(\xi-\eta)}$. We prove that if $\phi$ is a $C^1(\mathbb R^n)$ real-valued non-linear funct
Externí odkaz:
http://arxiv.org/abs/2006.14893
Autor:
Gigante, Giacomo, Jotsaroop, K.
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 September 2023 525(2)
Autor:
Garg, Rahul, Jotsaroop, K.
Publikováno v:
Indiana Univ. Math. J. 71 (2022), no. 2, 579-609
In this article we study localisation of spectral sums $\{S_R\}_{R > 0}$ associated to the sub-Laplacian $\mathcal{L}$ on the Heisenberg Group $\mathbb{H}^d$ where $S_R f := \int_0^R dE_{\lambda }f$, with $\mathcal{L} = \int_0^{\infty} \lambda \, dE_
Externí odkaz:
http://arxiv.org/abs/1804.02837
Autor:
Jotsaroop, K., Shrivastava, Saurabh
Publikováno v:
In Advances in Mathematics 24 February 2022 395
Autor:
Jotsaroop, K., Thangavelu, S.
We prove that the solution of the wave equation as- sociated to the Grushin operator $ G = -\Delta +|x|^2 \partial_t^2 $ is bounded on $ L^p(R^{n+1})(1 < p < \infty)$, when $|1/p- 1/2 | < 1/n+2$ .
Externí odkaz:
http://arxiv.org/abs/1202.2271
We show that Riesz transforms associated to the Grushin operator G = -\Delta - |x|^2\partial_t^2 are bounded on L^p(R^n+1). We also establish an analogue of H\"ormander-Mihlin multiplier theorem and study Bochner-Riesz means associated to the Grushin
Externí odkaz:
http://arxiv.org/abs/1110.3227