Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Josué Ramírez-Ortega"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 3, Pp 5269-5293 (2024)
We studied Toeplitz operators acting on certain poly-Bergman-type spaces of the Siegel domain $ D_{2} \subset \mathbb{C}^{2} $. Using continuous nilpotent symbols, we described the $ C^* $-algebras generated by such Toeplitz operators. Bounded measur
Externí odkaz:
https://doaj.org/article/b467b42bdd424adc889855a37a92ec8e
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbo
Externí odkaz:
https://doaj.org/article/1ebed50f6f2f4062b90e7ea0e894bff5
Autor:
Evodio Muñoz-Aguirre, Jorge Alvarez-Mena, Pablo Emilio Calderón-Saavedra, Josué Ramírez-Ortega, Francisco Gabriel Hernández-Zamora
Publikováno v:
Journal of Applied Mathematics and Physics. 11:780-789
Publikováno v:
Complex Analysis and Operator Theory. 15
We describe $$C^*$$ -algebras generated by Toeplitz operators with homogeneous symbols acting on polyharmonic Bergman spaces of the upper half-plane $$\Pi $$ . The symbols considered here have finite limits at the points 0 and $$\pi $$ . Under these
Publikováno v:
Complex Analysis and Operator Theory. 13:2443-2462
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
We describe certain $C^*$-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain $D_{2} \subset \mathbb{C}^{2}$. Bounded measurable functions of the form $c(\text{Im}\, \zeta_{1},
Publikováno v:
Operator Algebras, Toeplitz Operators and Related Topics ISBN: 9783030446505
In this work Toeplitz operators with bounded homogeneous symbols and acting on the n-poly-Bergman space \(\mathcal {A}_n^2(\Pi )\) are studied, where \(\Pi \subset \mathbb {C}\) is the upper half-plane. Here we consider homogeneous symbols of exponen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2dd2bd655f85fac7074534f6d187f082
https://doi.org/10.1007/978-3-030-44651-2_22
https://doi.org/10.1007/978-3-030-44651-2_22
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 22:213-227
We study the Toeplitz operators with quasi-separately radial symbols over the complex projective space $${\mathbb {CP}}^n$$ . We describe such Toeplitz operators and we prove that each bounded operator is unitarily equivalent to a Toeplitz operator w
Publikováno v:
Complex Analysis and Operator Theory. 9:1801-1817
In this work Toeplitz operators with vertical symbols and acting on the n-poly-Bergman space $${\mathcal {A}}_n^2(\Pi )$$ are studied, where $$\Pi \subset {\mathbb {C}}$$ is the upper half-plane. A vertical symbol is a bounded measurable function on