Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Josh Schaefferkoetter"'
Autor:
Josh Schaefferkoetter, Jianhua Yan, Claudia Ortega, Andrew Sertic, Eli Lechtman, Yael Eshet, Ur Metser, Patrick Veit-Haibach
Publikováno v:
EJNMMI Research, Vol 10, Iss 1, Pp 1-11 (2020)
Abstract Goal PET is a relatively noisy process compared to other imaging modalities, and sparsity of acquisition data leads to noise in the images. Recent work has focused on machine learning techniques to improve PET images, and this study investig
Externí odkaz:
https://doaj.org/article/321c295fc089477ba3add55049f917f3
Autor:
Ying-Hwey Nai, Dennis Lai Hong Cheong, Sharmili Roy, Trina Kok, Mary C. Stephenson, Josh Schaefferkoetter, John J. Totman, Maurizio Conti, Lars Eriksson, Edward G. Robins, Ziting Wang, Wynne Yuru Chua, Bertrand Wei Leng Ang, Arvind Kumar Singha, Thomas Paulraj Thamboo, Edmund Chiong, Anthonin Reilhac
Publikováno v:
Magnetic Resonance Imaging. 100:64-72
Autor:
Patrick Veit-Haibach, Ur Metser, Nathan Perlis, Alejandro Berlin, Claudia Ortega, Josh Schaefferkoetter, Reut Anconina
Publikováno v:
Journal of Nuclear Medicine. 61:1615-1620
Our purpose was to determine the effect of a smoothing filter and partial-volume correction (PVC) on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on molecular ima
Autor:
Josh Schaefferkoetter
Publikováno v:
Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging ISBN: 9783031001185
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::95df805b9d57f60e09c1e8a30d135424
https://doi.org/10.1007/978-3-031-00119-2_4
https://doi.org/10.1007/978-3-031-00119-2_4
Autor:
Jianhua Yan, Andrew Sertic, Claudia Ortega, Josh Schaefferkoetter, Ur Metser, Patrick Veit-Haibach, Yael Eshet, Eli Lechtman
Publikováno v:
EJNMMI Research, Vol 10, Iss 1, Pp 1-11 (2020)
EJNMMI Research
EJNMMI Research
Goal PET is a relatively noisy process compared to other imaging modalities, and sparsity of acquisition data leads to noise in the images. Recent work has focused on machine learning techniques to improve PET images, and this study investigates a de
Autor:
Claudia, Ortega, Rebecca K S, Wong, Josh, Schaefferkoetter, Patrick, Veit-Haibach, Sten, Myrehaug, Rosalyn, Juergens, David, Laidley, Reut, Anconina, Amy, Liu, Ur, Metser
Publikováno v:
J Nucl Med
The aim of this study was to determine whether quantitative PET parameters on baseline (68)Ga-DOTATATE PET/CT and interim PET (iPET) performed before the second cycle of therapy are predictive of the therapy response and progression-free survival (PF
Autor:
John J. Totman, Ying-Hwey Nai, Anthonin Reilhac, Daniel Fakhry-Darian, Josh Schaefferkoetter, David W. Townsend, Teng-Hwee Tan, Sophie O'Doherty, Arvind K. Sinha, Maurizio Conti, Ivan Weng Keong Tham, Daniel C. Alexander
Publikováno v:
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB). 81
Purpose To conduct a simplified lesion-detection task of a low-dose (LD) PET-CT protocol for frequent lung screening using 30% of the effective PETCT dose and to investigate the feasibility of increasing clinical value of low-statistics scans using m
Autor:
John J. Totman, Wanying Xie, Josh Schaefferkoetter, Sue-Ann Ng, David Chee Eng Ng, Stephanie Marchesseau, Andrea Hsiu Ling Low, Y. Wang
Publikováno v:
THURSDAY, 14 JUNE 2018.
Background The gastrointestinal (GI) tract is affected in 90% of patients with systemic sclerosis (SSc), a disease characterised by excessive fibrosis. Baseline GI involvement is an independent predictor of 2 year mortality in patients with early dif
Publikováno v:
2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).
A study is described that investigates the capacity for mathematical observer models to mimic the performance of human observers in a PET lesion detection task. FDG-PET data from seventeen tuberculosis patients presenting diffuse hyper-metabolic lung