Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Joseph L. Wetherell"'
Let $E$ be an elliptic curve, with identity $O$, and let $C$ be a cyclic subgroup of odd order $N$, over an algebraically closed field $k$ with $\operatorname{char} k \nmid N$. For $P \in C$, let $s_P$ be a rational function with divisor $N \cdot P -
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1a00a73e8ba5ea3562ba10602c4c7d3
https://www.repository.cam.ac.uk/handle/1810/325259
https://www.repository.cam.ac.uk/handle/1810/325259
Autor:
E. Victor Flynn, Joseph L. Wetherell, Edward F. Schaefer, Franck Leprévost, William Stein, Michael Stoll
This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20bb677957798b314ee1369a034099f2
https://ora.ox.ac.uk/objects/uuid:e23f4731-cd7f-4e6b-807d-65e7fc6a982b
https://ora.ox.ac.uk/objects/uuid:e23f4731-cd7f-4e6b-807d-65e7fc6a982b
Autor:
Sheldon Kamienny, Joseph L. Wetherell
Publikováno v:
Communications in Algebra. 26:1675-1678
(1998). On torsion in abelian varieties. Communications in Algebra: Vol. 26, No. 5, pp. 1675-1678.
Let f and g be nonconstant polynomials over an arbitrary field K. In this paper we study the intersection of the polynomial rings K[f] and K[g], and in particular we ask whether this intersection is larger than K. We completely resolve this question
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33d22f23ce9f52fd370498141b69cb31
http://arxiv.org/abs/0707.1552
http://arxiv.org/abs/0707.1552
Autor:
Everett W. Howe, Noam D. Elkies, Michael E. Zieve, Joseph L. Wetherell, Bjorn Poonen, Andrew Kresch
Publikováno v:
Duke Math. J. 122, no. 2 (2004), 399-422
We resolve a 1983 question of Serre by constructing curves with many points of every genus over every finite field. More precisely, we show that for every prime power q there is a positive constant c_q with the following property: for every non-negat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::880169121300a4d177e2438eba61bc0b
https://www.zora.uzh.ch/id/eprint/21789/
https://www.zora.uzh.ch/id/eprint/21789/
Autor:
E. V. Flynn, Joseph L. Wetherell
Publikováno v:
Scopus-Elsevier
We discuss a technique for trying to find all rational points on curves of the form Y 2=f 3 X 6+f 2 X 4+f 1 X 2+f 0, where the sextic has nonzero discriminant. This is a bielliptic curve of genus 2. When the rank of the Jacobian is 0 or 1, Chabauty's
Publikováno v:
Journal of Number Theory. (1):158-175
This article describes an algorithm for computing the Selmer group of an isogeny between abelian varieties. This algorithm applies when there is an isogeny from the image abelian variety to the Jacobian of a curve. The use of an auxiliary Jacobian si
Autor:
E. Victor Flynn, Joseph L. Wetherell
Publikováno v:
Scopus-Elsevier
We answer a challenge of Serre by showing that every rational point on the projective curve X$^4$ + Y$^4$ = 17 Z$^4$ is of the form ($\pm$1, $\pm$2, 1) or ($\pm$2, $\pm$1, 1). Our approach builds on recent ideas from both Nils Bruin and the authors o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea8c1a07eb449483d44b95df35a3e0fe
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035651862&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035651862&partnerID=MN8TOARS