Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Joseph B. Muskat"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 9, Iss 4, Pp 665-704 (1986)
For primes p≡4, 11(mod15) explicit formulae are obtained for the cyclotomic numbers of order 15 over GF(p2).
Externí odkaz:
https://doaj.org/article/aa9cfd6b2fa144509b79f67e41b24f33
Publikováno v:
Acta Arithmetica. 70:215-278
Autor:
Joseph B. Muskat
Publikováno v:
Mathematics of Computation. 61:365-372
Consider the sequences { u n } \{ {u_n}\} and { v n } \{ {v_n}\} generated by u n + 1 = p u n − q u n − 1 {u_{n + 1}} = p{u_n} - q{u_{n - 1}} and v n + 1 = p v n − q v n − 1 , n ≥ 1 {v_{n + 1}} = p{v_n} - q{v_{n - 1}},n \geq 1 , where u 0 =
Publikováno v:
Mathematics of Computation. 55:327-343
We give a deterministic algorithm for finding all primitive representations of a natural number n in the form f u 2 + g v 2 f{u^2} + g{v^2} , where f and g are given positive coprime integers, and n ≥ f + g + 1 n \geq f + g + 1 , ( n , f g ) = 1 (n
Publikováno v:
Mathematics of Computation. 55:327
Autor:
Yun Cheng Zee, Joseph B. Muskat
Publikováno v:
Proceedings of the American Mathematical Society. 49:13-19
An arithmetic proof by L. E. Dickson of the uniqueness of the integral solutions of a certain quaternary quadratic form is generalized to include several similar forms which have appeared recently in cyclotomy. In his exposition of cyclotomy of order
Publikováno v:
International Journal of Mathematics and Mathematical Sciences. 9:665-704
For primesp≡4,11(mod15)explicit formulae are obtained for the cyclotomic numbers of order15overGF(p2).
Autor:
Joseph B. Muskat
Publikováno v:
Journal of Number Theory. 19:263-282
Let p ≡ ± 1 (mod 8) be a prime which is a quadratic residue modulo 7. Then p = M2 + 7N2, and knowing M and N makes it possible to “predict” whether p = A2 + 14B2 is solvable or p = 7C2 + 2D2 is solvable. More generally, let q and r be distinct
Autor:
Joseph B. Muskat
Publikováno v:
Acta Arithmetica. 11:263-279
Autor:
Joseph B. Muskat
Publikováno v:
Canadian Journal of Mathematics. 16:343-352
Lower case italics will denote rational integers, while lower case Greek letters will denote algebraic integers. The Law of Quadratic Reciprocity can be formulated as follows:If p and a are distinct odd primes, then a is a quadratic residue (mod p) i