Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Jose Alfredo Lopez-Mimbela"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2008, Iss 10, Pp 1-18 (2008)
We consider the nonlinear equation $$ frac{partial}{partial t} u (t) = k (t) Delta _{alpha }u (t) + u^{1+eta } (t),quad u(0,x)=lambda varphi (x),; xin mathbb{R} ^{d}, $$ where $Delta _{alpha }:=-(-Delta)^{alpha /2}$ denotes the fractional power of th
Externí odkaz:
https://doaj.org/article/43af8306a1c14eb3887e359e56c2f0d0
Publikováno v:
Stochastic Models. 22:735-752
We give sufficient conditions for finite time blow up and for existence of global non-negative mild solutions to semilinear equations of the form ∂u(t, x)/∂t = L(t) u(t, x) + γu β(t, x), t > s ≥ 0, u(s, x) = ϕ(x), x ∊ ℝ d , where γ > 0
Publikováno v:
Electron. J. Probab. 16 (2011), 1356-1380
We consider a critical branching particle system in $\R^d$, composed of individuals of a finite number of types $i\in\{1,...,K\}$. Each individual of type $i$ moves independently according to a symmetric $\alpha_i$-stable motion. We assume that the p
Publikováno v:
Stochastic Models. 22:559-559