Zobrazeno 1 - 10
of 44
pro vyhledávání: '"José Estévez"'
Autor:
Ana B. Pascual-Venteo, Jose L. Garcia, Katja Berger, José Estévez, Jorge Vicent, Adrián Pérez-Suay, Shari Van Wittenberghe, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 16, Iss 7, p 1211 (2024)
The continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such a
Externí odkaz:
https://doaj.org/article/4cee256037a248249168ae2ccc0df845
Publikováno v:
Sensors, Vol 24, Iss 1, p 239 (2023)
Glaucoma, a leading cause of blindness, damages the optic nerve, making early diagnosis challenging due to no initial symptoms. Fundus eye images taken with a non-mydriatic retinograph help diagnose glaucoma by revealing structural changes, including
Externí odkaz:
https://doaj.org/article/c5b9622300234219a1d31f540b380f1f
Publikováno v:
Machine Learning: Science and Technology, Vol 4, Iss 4, p 045024 (2023)
Deep learning systems, especially in critical fields like medicine, suffer from a significant drawback, their black box nature, which lacks mechanisms for explaining or interpreting their decisions. In this regard, our research aims to evaluate the u
Externí odkaz:
https://doaj.org/article/e1abd2f2f9a1422196949c89883fe4b4
Autor:
Pablo Reyes-Muñoz, Luca Pipia, Matías Salinero-Delgado, Santiago Belda, Katja Berger, José Estévez, Miguel Morata, Juan Pablo Rivera-Caicedo, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 14, Iss 6, p 1347 (2022)
Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3
Externí odkaz:
https://doaj.org/article/e82611827de54fedadefc0953b2af57b
Autor:
Matías Salinero-Delgado, José Estévez, Luca Pipia, Santiago Belda, Katja Berger, Vanessa Paredes Gómez, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 14, Iss 1, p 146 (2021)
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamic
Externí odkaz:
https://doaj.org/article/6274f420754846579a127fba8ece6afd
Autor:
José Estévez, Katja Berger, Jorge Vicent, Juan Pablo Rivera-Caicedo, Matthias Wocher, Jochem Verrelst
Publikováno v:
Remote Sensing, Vol 13, Iss 8, p 1589 (2021)
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and bi
Externí odkaz:
https://doaj.org/article/aeea5e08d48d45a0831b608182db1642
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jorge Vicent, José Estévez, Katja Berger, Juan Pablo Rivera-Caicedo, Jochem Verrelst, Matthias Wocher
Publikováno v:
Remote Sensing
Remote Sensing; Volume 13; Issue 8; Pages: 1589
Remote Sensing, Vol 13, Iss 1589, p 1589 (2021)
Remote Sensing; Volume 13; Issue 8; Pages: 1589
Remote Sensing, Vol 13, Iss 1589, p 1589 (2021)
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and bi
Autor:
José Estévez, Matías Salinero-Delgado, Katja Berger, Luca Pipia, Juan Pablo Rivera-Caicedo, Matthias Wocher, Pablo Reyes-Muñoz, Giulia Tagliabue, Mirco Boschetti, Jochem Verrelst
Publikováno v:
José Estévez, Matías Salinero-Delgado, Katja Berger, Luca Pipia, Juan Pablo Rivera-Caicedo, Matthias Wocher, Pablo Reyes-Muñoz, Giulia Tagliabue, Mirco Boschetti, Jochem Verrelst (2022). Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sensing of Environment, 273, 112958.
Remote Sensing of Environment
Remote Sensing of Environment
The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval mod