Zobrazeno 1 - 10
of 14
pro vyhledávání: '"José D. Alvarado"'
Autor:
Jorge L. Amaya-Rivas, Bryan S. Perero, Carlos G. Helguero, Jorge L. Hurel, Juan M. Peralta, Francisca A. Flores, José D. Alvarado
Publikováno v:
Heliyon, Vol 10, Iss 5, Pp e26641- (2024)
Additive Manufacturing (AM) has recently demonstrated significant medical progress. Due to advancements in materials and methodologies, various processes have been developed to cater to the medical sector's requirements, including bioprinting and 4D,
Externí odkaz:
https://doaj.org/article/a12ef50cb9794cfd9a63ed67ef30219b
Publikováno v:
LATIN 2022: Theoretical Informatics ISBN: 9783031206238
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4f81a78a1e450e9704af2d365afb68c5
https://doi.org/10.1007/978-3-031-20624-5_27
https://doi.org/10.1007/978-3-031-20624-5_27
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 37, Iss 4, Pp 953-961 (2017)
For a graph $G$, let $\gamma_R(G)$ and $\gamma_{r2}(G)$ denote the Roman domination number of $G$ and the $2$-rainbow domination number of $G$, respectively. It is known that $\gamma_{r2}(G)\leq \gamma_R(G)\leq \frac{3}{2}\gamma_{r2}(G)$. Fujita and
Publikováno v:
Discrete Mathematics. 339:2715-2720
As a common generalization of the domination number and the total domination number of a graph G , we study the k -component domination number γ k ( G ) of G defined as the minimum cardinality of a dominating set D of G for which each component of t
Fricke, Hedetniemi, Hedetniemi, and Hutson asked whether every tree with domination number γ has at most 2 γ minimum dominating sets. Bien gave a counterexample, which allows us to construct forests with domination number γ and 2 . 059 8 γ minimu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca6d3813b74d58c613247d0e494e2a71
http://arxiv.org/abs/1804.00158
http://arxiv.org/abs/1804.00158
Publikováno v:
Discrete Applied Mathematics. 194:154-159
For positive integers k and n , let γ k ( n ) , g k ( n ) , and β k ( n ) denote the maximum values of the distance k -domination number, the distance k -guarding number, and the distance k -vertex cover number of maximal outerplanar graphs of orde
Publikováno v:
Discrete Mathematics. 338:1424-1431
The domination number γ ( G ) , the total domination number γ t ( G ) , the paired domination number γ p ( G ) , the domatic number d ( G ) , and the total domatic number d t ( G ) of a graph G without isolated vertices are related by trivial ineq
For a set $$\mathcal{F}$$ of graphs, an instance of the $$\mathcal{F}$$ -free Sandwich Problem is a pair $$(G_1,G_2)$$ consisting of two graphs $$G_1$$ and $$G_2$$ with the same vertex set such that $$G_1$$ is a subgraph of $$G_2$$ , and the task is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::020f4d6f9ed7c3239387be0561e888f3
http://arxiv.org/abs/1704.01922
http://arxiv.org/abs/1704.01922
For a graph $G$, let $\gamma_{r2}(G)$ and $\gamma_R(G)$ denote the $2$-rainbow domination number and the Roman domination number, respectively. Fujita and Furuya (Difference between 2-rainbow domination and Roman domination in graphs, Discrete Applie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96ceffffe6035c80cd818c7a1e473ca8
http://arxiv.org/abs/1507.04899
http://arxiv.org/abs/1507.04899
For a maximal outerplanar graph $G$ of order $n$ at least $3$, Matheson and Tarjan showed that $G$ has domination number at most $n/3$. Similarly, for a maximal outerplanar graph $G$ of order $n$ at least $5$, Dorfling, Hattingh, and Jonck showed, by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f266621d34461af72cfde63378465cb0