Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Jorge L. Bernal-Rusiel"'
Autor:
Jorge L. Bernal-Rusiel, Nicolas Rannou, Randy L. Gollub, Steve Pieper, Shawn Murphy, Richard Robertson, Patricia E. Grant, Rudolph Pienaar
Publikováno v:
Frontiers in Neuroinformatics, Vol 11 (2017)
In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices
Externí odkaz:
https://doaj.org/article/e0c90df792664523880fe2103c37ab24
Autor:
Nicha C. Dvornek, Jorge L. Bernal-Rusiel, Haiping Lu, Shuo Zhou, Ai Wern Chung, Keri S. Rosch, Deana Crocetti, Stewart H. Mostofsky, Islem Rekik, Mwiza Kunda, Jennings Zhang, Archana Venkataraman, Andrew Melbourne, Egor Levchenko, Minjeong Kim, Sandip Samal, Mary Beth Nebel, Neil Marlow, Sebastien Ourselin, Michael Hütel, Rudolph Pienaar, Gideon Pinto, Hassna Irzan, Markus D. Schirmer, Juntang Zhuang, Karen E. Seymour
Publikováno v:
Medical image analysis 70, 101972-(2021). doi:10.1016/j.media.2021.101972
King's College London
Med Image Anal
King's College London
Med Image Anal
Large, open-source consortium datasets have spurred the development of new and increasingly powerful machine learning approaches in brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable inform
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8299ea2c0dc2ac718a88921895e2766
Publikováno v:
NeuroImage. 97:9-18
This paper presents a method for the statistical analysis of the associations between longitudinal neuroimaging measurements, e.g., of cortical thickness, and the timing of a clinical event of interest, e.g., disease onset. The proposed approach cons
Publikováno v:
NeuroImage. 81:358-370
We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME fr
Publikováno v:
NeuroImage. 66:249-260
Longitudinal neuroimaging (LNI) studies are rapidly becoming more prevalent and growing in size. Today, no standardized computational tools exist for the analysis of LNI data and widely used methods are sub-optimal for the types of data encountered i
Detection of focal changes in human cortical thickness: Spherical wavelets versus Gaussian smoothing
Publikováno v:
NeuroImage. 41:1278-1292
Subtle but progressive variations in human cortical thickness have been associated with the initial phases of prevalent neurological and psychiatric conditions. But slight changes in cortical thickness at preclinical stages are typically masked by ef
Publikováno v:
NeuroImage. 52(1)
article i nfo The extent of smoothing applied to cortical thickness maps critically influences sensitivity, anatomical precision and resolution of statistical change detection. Theoretically, it could be optimized by increasing the trade-off between
Publikováno v:
NeuroImage. 108:74
Publikováno v:
NeuroImage. 108:123
Publikováno v:
NeuroImage. 108:110