Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Jorge García-Melián"'
Publikováno v:
Journal of Differential Equations. 267:5258-5289
In this paper we are concerned with the construction of periodic solutions of the nonlocal problem ( − Δ ) s u = f ( u ) in R , where ( − Δ ) s stands for the s-Laplacian, s ∈ ( 0 , 1 ) . We introduce a suitable framework which allows, by mea
Publikováno v:
Proceedings of the American Mathematical Society. 147:3011-3019
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 149:761-779
In this paper, we analyse the semilinear fourth-order problem ( − Δ)2 u = g(u) in exterior domains of ℝN. Assuming the function g is nondecreasing and continuous in [0, + ∞) and positive in (0, + ∞), we show that positive classical supersolu
Publikováno v:
Journal of Differential Equations. 265:6316-6351
In this paper we obtain Liouville type theorems for positive supersolutions of the elliptic system { − Δ u + | ∇ u | q = λ f ( v ) − Δ v + | ∇ v | q = μ g ( u ) in exterior domains of R N , where q > 1 and the functions f and g behave lik
Publikováno v:
Complex Variables and Elliptic Equations. 64:933-949
In this work, we obtain some new Liouville's theorems for positive, radially symmetric solutions of the equation −Δu=f(u)in RN, where f is a continuous function in [0,+∞) which is positive in (0,∞)...
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 197:1385-1416
In this paper, we analyze the semi-linear fractional Laplace equation $$\begin{aligned} (-\Delta )^s u = f(u) \quad \text { in } {\mathbb {R}}^N_+,\quad u=0 \quad \text { in } {\mathbb {R}}^N{\setminus } {\mathbb {R}}^N_+, \end{aligned}$$ where $${\m
Publikováno v:
Revista Matemática Complutense. 30:313-334
We consider the nonlinear Dirichlet boundary value problem Open image in new window in a bounded domain \(\Omega \subset \mathbb {R}^N\) with smooth boundary \(\partial \Omega \), where \(\Delta _p u\mathop {=}\limits ^{\mathrm{{def}}}\mathrm {div} (
Publikováno v:
Advances in Nonlinear Analysis, Vol 6, Iss 1, Pp 1-12 (2017)
We consider the elliptic system Δ u = u p v q ${\Delta u\hskip-0.284528pt=\hskip-0.284528ptu^{p}v^{q}}$ , Δ v = u r v s ${\Delta v\hskip-0.284528pt=\hskip-0.284528ptu^{r}v^{s}}$ in Ω with the boundary conditions ∂ u / ∂
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 106:866-876
We consider the semilinear elliptic problem (0.1) { − Δ u = f ( u ) in R + N u = 0 on ∂ R + N where the nonlinearity f is assumed to be C 1 and globally Lipschitz with f ( 0 ) 0 , and R + N = { x ∈ R N : x N > 0 } stands for the half-space. De
Publikováno v:
Discrete and Continuous Dynamical Systems. 36:4703-4721
In this paper we consider positive supersolutions of the elliptic equation $-\triangle u = f(u) |\nabla u|^q$, posed in exterior domains of $\mathbb{R}^N$ ($N\ge 2$), where $f$ is continuous in $[0,+\infty)$ and positive in $(0,+\infty)$ and $q>0$. W