Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Jordan Stoyanov"'
Autor:
Dimitar Sivrev, Antoaneta Georgieva, Nikolay Dimitrov, Jordan Stoyanov, Ivelina Ivanova, Nikola Tomov
Publikováno v:
Science & Research (2018)
Anatomy is the foundation of medicine. Practical anatomy education at Medical Universities is usually performed on cadaveric material. The proper conservation of biological material is important not only for the quality of medical education but also
Externí odkaz:
https://doaj.org/article/5ceaed82d47240d29dfb350499ba8b32
Autor:
Nikola Tomov, Nikolay Dimitrov, Antoaneta Georgieva, Ivelina Ivanova, Jordan Stoyanov, Dimitar Sivrev
Publikováno v:
Science & Research (2018)
Ever since its existence was suggested by Ernst Gräfenberg in the 1940s, the eponymous G-spot remains a controversial topic among anatomists, gynecologists, sexual medicine specialists, and self-proclaimed sexologists. Its assumed localization on th
Externí odkaz:
https://doaj.org/article/d017b00eb0604c7ba96f4cbec54de6a2
Publikováno v:
Theory of Probability & Its Applications. 64:579-594
We study the relationship between the well-known Carleman's condition guaranteeing that a probability distribution is uniquely determined by its moments, and a recent, easily checkable condition on...
Publikováno v:
Teoriya Veroyatnostei i ee Primeneniya. 65:634-648
We have analyzed some conditions which are essentially involved in deciding whether or not a probability distribution is unique (moment-determinate) or non-unique (moment-indeterminate) by its moments. We suggest new conditions concerning both absolu
Publikováno v:
Teoriya Veroyatnostei i ee Primeneniya. 64:725-745
Изучается связь между хорошо известным условием Карлемана, гарантирующим единственность определения вероятностного распределения св
Autor:
Christophe Vignat, Jordan Stoyanov
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (4), pp.1791-1804. ⟨10.1090/proc/14638⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (4), pp.1791-1804. ⟨10.1090/proc/14638⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58b81ca2c8f01b29ea897fadde1be88c
https://hal.archives-ouvertes.fr/hal-02500435
https://hal.archives-ouvertes.fr/hal-02500435
Publikováno v:
Journal of Statistical Planning and Inference. 154:166-177
We present new results on the Hamburger moment problem for probability distributions and apply them to characterize the moment determinacy of powers and products of i.i.d. random variables with values in the whole real line. Detailed proofs of all re
Publikováno v:
Statistical Methodology. 20:40-62
We are interested in the sample maximum X ( n ) of an i.i.d standard normal sample of size n . First, we derive two-sided bounds on the mean and the median of X ( n ) that are valid for any fixed n ≥ n 0 , where n 0 is ‘small’, e.g. n 0 = 7 . T
Autor:
Jordan Stoyanov, Gwo Dong Lin
Publikováno v:
Theory of Probability & Its Applications. 57:699-708
In probabilistic terms Hardy's condition is written as follows: ${\bf E}\,[e^{c{\sqrt X}}] 0$ a constant. If this holds, then all moments of $X$ are finite and the distribution of $X$ is uniquely determined by the moments (M-determinate). This condit
Autor:
Jordan Stoyanov, Christian Kleiber
Publikováno v:
Journal of Multivariate Analysis. 113:7-18
For any multivariate distribution with finite moments we can ask, as in the univariate case, whether or not the distribution is uniquely determined by its moments. In this paper, we summarize, unify and extend some results that are widely scattered i