Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Jordan Dotzel"'
Publikováno v:
IEEE Design & Test. 38:7-26
Significant growth is seen in artificial intelligence (AI), in particular deep learning (DL), which has made remarkable progress in various areas such as computer vision, natural language processing, health care, autonomous driving, and surveillance.
Autor:
Yu-Shan Huang, Guilherme B. Manske, Matheus F. Pontes, Wei Zeng, Isac de Souza Campos, Walter Lau Neto, Satrajit Chatterjee, Zixuan Jiang, Marilton Sanchotene de Aguiar, Mingfei Yu, Brunno Abreu, Alan Mishchenko, Akash Kumar, Yuan Zhou, Xinpei Zhang, Azadeh Davoodi, David Z. Pan, Pierre-Emmanuel Gaillardon, Qingyang Yi, Hoa-Ren Wang, Cristina Meinhardt, Yukio Miyasaka, Aditya Lohana, Augusto Berndt, Zhiru Zhang, Rasit O. Topaloglu, Po-Chun Chien, Jordan Dotzel, Jie-Hong R. Jiang, Jonata Tyska Carvalho, Leomar S. da Rosa, Masahiro Fujita, Valerio Tenace, Jiaqi Gu, Yichi Zhang, Hanyu Wang, Sergio Bampi, Paulo F. Butzen, Shubham Rai, Mateus Grellert, Zheng Zhao
Publikováno v:
DATE
Logic synthesis is a fundamental step in hardware design whose goal is to find structural representations of Boolean functions while minimizing delay and area. If the function is completely-specified, the implementation accurately represents the func
Publikováno v:
CVPR
We propose unitary group convolutions (UGConvs), a building block for CNNs which compose a group convolution with unitary transforms in feature space to learn a richer set of representations than group convolution alone. UGConvs generalize two dispar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9b8f0edad9c048134a59985e008d56e
http://arxiv.org/abs/1811.07755
http://arxiv.org/abs/1811.07755