Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Jordan, Vincent"'
Publikováno v:
Environmental Communication. 16:1003-1009
Publikováno v:
Journal of Consumer Protection and Food Safety.
Machine learning has been extensively used for analyzing spectral data in food quality management. However, collecting high-quality spectral data from miniature spectrometers outside the laboratory is challenging due to various factors such as distor
Autor:
Shaun Bangay, Adam Cardilini, Nyree Raabe, Kelly Miller, Jordan Vincent, Greg Bowtell, Daniel Ierodiaconou, Tanya King
Publikováno v:
Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Publikováno v:
Sensors, Vol 18, Iss 6, p 1708 (2018)
Food fraud, the sale of goods that have in some way been mislabelled or tampered with, is an increasing concern, with a number of high profile documented incidents in recent years. These recent incidents and their scope show that there are gaps in th
Externí odkaz:
https://doaj.org/article/362443ef4b1d4cfb90fe0df2435c570e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Sensing for Agriculture and Food Quality and Safety XIII.
Food authentication and quality checks can be carried out by applying machine learning algorithms on spectral data acquired from miniature spectrometers. This is a very appealing solution as the cost-effectiveness of miniature spectrometers extends t
Trace methane detection in the parts per million range is reported using a novel detection scheme based on optical emission spectra from low temperature atmospheric pressure microplasmas. These bright low-cost plasma sources were operated under non-e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59691be337292226f57699c7b2d10fe1
https://doi.org/10.26434/chemrxiv.11898363
https://doi.org/10.26434/chemrxiv.11898363
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Talanta. 216
Edible oil adulteration is a main concern for consumers. This paper presents a study on the use of smartphone, coupled with image processing and chemometrics, to quantify adulterant levels in extra virgin olive oil. A sequence of light with varying c
Publikováno v:
Wang, H, Elzinga, C H, Lin, Z & Vincent, J 2019, ' Quantifying sequential subsumption ', Theoretical Computer Science, vol. 793, pp. 79-99 . https://doi.org/10.1016/j.tcs.2019.05.025, https://doi.org/10.1016/j.tcs.2019.05.025
Subsumption is used in knowledge representation and ontology to describe the relationship between concepts. Concept A is subsumed by concept B if the extension of A is always a subset of the extension of B, irrespective of the interpretation. The sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ccc78fc01546abb2b60d9fc6a1c5eb0
https://pure.qub.ac.uk/en/publications/quantifying-sequential-subsumption(2469e417-55d8-47ae-9209-b8744fff7c01).html
https://pure.qub.ac.uk/en/publications/quantifying-sequential-subsumption(2469e417-55d8-47ae-9209-b8744fff7c01).html