Zobrazeno 1 - 10
of 2 645
pro vyhledávání: '"Jordán, B"'
Autor:
Chen, Haonan, Smith, Jordan B. L., Spijkervet, Janne, Wang, Ju-Chiang, Zou, Pei, Li, Bochen, Kong, Qiuqiang, Du, Xingjian
Progress in the task of symbolic music generation may be lagging behind other tasks like audio and text generation, in part because of the scarcity of symbolic training data. In this paper, we leverage the greater scale of audio music data by applyin
Externí odkaz:
http://arxiv.org/abs/2409.03055
Autor:
Ashton, Neil, Angel, Jordan B., Ghate, Aditya S., Kenway, Gaetan K. W., Wong, Man Long, Kiris, Cetin, Walle, Astrid, Maddix, Danielle C., Page, Gary
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computa
Externí odkaz:
http://arxiv.org/abs/2407.19320
Autor:
Abe, H., Abe, S., Acciari, V. A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Baack, D., Babić, A., Baquero, A., de Almeida, U. Barres, Batković, I., Baxter, J., González, J. Becerra, Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošjak, Ž, Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Chai, Y., Cifuentes, A., Cikota, S., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Ammando, F., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Del Popolo, A., Delfino, M., Delgado, J., Mendez, C. Delgado, Depaoli, D., Di Pierro, F., Di Venere, L., Prester, D. Dominis, Dorner, D., Doro, M., Elsaesser, D., Emery, G., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fukami, S., Fukazawa, Y., López, R. J. García, Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Grau, R., Green, J. G., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hrupec, D., Hütten, M., Imazawa, R., Inada, T., Iotov, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Lezáun, M. Láinez, Lamastra, A., Leone, F., Lindfors, E., Linhoff, L., Lombardi, S., Longo, F., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Mang, N., Manganaro, M., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Neustroev, V., Nigro, C., Nikolić, L., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavlović, D., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Sitarek, J., Spolon, A., Stamerra, A., Strišović, J., Strom, D., Suda, Y., Tajima, H., Takeishi, R., Tavecchio, F., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Tosti, L., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Ventura, S., Verguilov, V., Viale, I., Vigorito, C. F., Vitale, V., Walter, R., Wunderlich, C., Leto, T. Yamamoto M. Perri F. Verrecchia C., Das, S., Chatterjee, R., Raiteri, C. M., Villata, M., Semkov, E., Ibryamov, S., Bachev, R., Strigachev, A., Damljanovic, G., Vince, O., Jovanovic, M. D., Stojanovic, M., Larionov, V. M., Grishina, T. S., Kopatskaya, E. N., Larionova, E. G., Morozova, D. A., Savchenko, S. S., Troitskiy, I. S., Troitskaya, Y. V., Vasilyev, A. A., Chen, W. P., Hou, W. J., Lin, C. S., Tsai, A., Jorstad, S. G., Weaver, Z. R., Acosta-Pulido, J. A., Carnerero, M. I., Carosati, D., Kurtanidze, S. O., Kurtanidze, O. M., Jordan, B., Ivanidze, R. Z., Gazeas, K., Vrontaki, K., Hovatta, T., Liodakis, I., Readhead, A. C. S., Kiehlmann, S., Zheng, W., Filippenko, A. V.
Publikováno v:
A&A 682, A114 (2024)
The BL Lac 1ES 2344+514 is known for temporary extreme properties (e.g., a shift of the synchrotron SED peak energy $\nu_{synch,p}$ above 1keV). While those extreme states were so far observed only during high flux levels, additional multi-year obser
Externí odkaz:
http://arxiv.org/abs/2310.03922
Creating a pop song melody according to pre-written lyrics is a typical practice for composers. A computational model of how lyrics are set as melodies is important for automatic composition systems, but an end-to-end lyric-to-melody model would requ
Externí odkaz:
http://arxiv.org/abs/2301.01361
Music structure analysis (MSA) systems aim to segment a song recording into non-overlapping sections with useful labels. Previous MSA systems typically predict abstract labels in a post-processing step and require the full context of the song. By con
Externí odkaz:
http://arxiv.org/abs/2211.15787
A positivity-preserving fractional algorithm is presented for solving the four-equation homogeneous relaxation model (HRM) with an arbitrary number of ideal gases and a liquid governed by the stiffened gas equation of state. The fractional algorithm
Externí odkaz:
http://arxiv.org/abs/2208.04488
Conventional music structure analysis algorithms aim to divide a song into segments and to group them with abstract labels (e.g., 'A', 'B', and 'C'). However, explicitly identifying the function of each segment (e.g., 'verse' or 'chorus') is rarely a
Externí odkaz:
http://arxiv.org/abs/2205.14700
Autor:
Barlow, Jordan B., Dennis, Alan R.
Publikováno v:
In International Journal of Information Management December 2024 79
Music structure analysis (MSA) methods traditionally search for musically meaningful patterns in audio: homogeneity, repetition, novelty, and segment-length regularity. Hand-crafted audio features such as MFCCs or chromagrams are often used to elicit
Externí odkaz:
http://arxiv.org/abs/2110.09000
Autor:
Godinich, Brandon M., Hensperger, Vince, Guo, William, Patel, Jay, Hugh, Jeremy, Kaufmann, Tara L., Slutsky, Jordan B.
Publikováno v:
In JAAD Reviews September 2024 1:29-41