Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Jong Do Park"'
Autor:
Ho-Hyeong Lee, Jong-Do Park
Publikováno v:
AIMS Mathematics, Vol 6, Iss 11, Pp 12379-12394 (2021)
This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where
Externí odkaz:
https://doaj.org/article/55e0125f87eb405bbdc2edd0f283403e
Autor:
Ho-Hyeong Lee, Jong-Do Park
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-17 (2020)
Abstract Let { f k } k = 1 ∞ $\{f_{k} \} _{k=1}^{\infty}$ be a Fibonacci sequence with f 1 = f 2 = 1 $f_{1}=f_{2}=1$ . In this paper, we find a simple form g n $g_{n}$ such that lim n → ∞ { ( ∑ k = n ∞ a k ) − 1 − g n } = 0 , $$\lim_{n\
Externí odkaz:
https://doaj.org/article/1ef1046a40be4b5387cc66006d30bf3c
Autor:
Jong-Do Park
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
In this paper, we compute the reproducing kernel Bm,αz,w for the generalized Fock space Fm,α2ℂ. The usual Fock space is the case when m=2. We express the reproducing kernel in terms of a suitable hypergeometric series 1Fq. In particular, we show
Externí odkaz:
https://doaj.org/article/03b85d23c5ad43d6a95db08bed385463
Autor:
Sovit Bhandari, Navin Ranjan, Yeong-Chan Kim, Jong-Do Park, Kwang-Il Hwang, Woo-Hyuk Kim, Youn-Sik Hong, Hoon Kim
Publikováno v:
Applied Sciences, Vol 11, Iss 19, p 9270 (2021)
In recent years, the governments in many countries have recognized the importance of data in boosting their economies. As a result, they are implementing the philosophy of open government data (OGD) to make public data easily and freely available to
Externí odkaz:
https://doaj.org/article/c4c86c57c3714f2bb8002cef9b83b3b6
Autor:
Jong Do Park, Ho Hyeong Lee
Publikováno v:
AIMS Mathematics, Vol 6, Iss 11, Pp 12379-12394 (2021)
This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where
Autor:
Jong-Do Park
Publikováno v:
Journal of Function Spaces, Vol 2016 (2016)
We consider the Reinhardt domain Dn={(ζ,z)∈C×Cn:|ζ|2
Externí odkaz:
https://doaj.org/article/ec358c5885e14fbc8b1961ba74ef1ce5
Autor:
Jong-Do Park
Publikováno v:
Journal of Function Spaces, Vol 2016 (2016)
In the set of all vector norms in Cn, there exist maximal and minimal complex norms which coincide with the real Euclidean norm in Rn. The purpose of this paper is to introduce new quasinorms defined on complex matrices. These two matrix quasinorms a
Externí odkaz:
https://doaj.org/article/685bb156c28646d3a8ac6f7243d6eb36
Autor:
Jong-Do Park
Publikováno v:
Journal of Function Spaces, Vol 2015 (2015)
We consider a class of convex domains which contains non-Reinhardt domains with nonsmooth boundary. We show that the domains of this class satisfy the condition Q.
Externí odkaz:
https://doaj.org/article/25bef79a448840769f96f10201698a57
Autor:
Jong-Do Park
Publikováno v:
Journal of Mathematical Analysis and Applications. 509:125909
Autor:
Jong Do Park
Publikováno v:
Journal of Mathematical Analysis and Applications. 504:125398
In this paper, we show that Lauricella's hypergeometric function F 8 has a close connection with the Bergman kernel for the intersection of two cylindrical domains defined by D ( p 1 , p 2 , p 3 ) : = { z ∈ C 3 : | z 1 | 2 p 1 + | z 2 | 2 p 2 1 , |