Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Jonathan Nilsson"'
Publikováno v:
Frontiers in Chemistry, Vol 7 (2019)
A model able to a priori predict ion conductivities of ionic liquids (ILs) is a desired design tool. We here propose a set of simple conductivity models for ILs composed of small ions by only using data easily derived from standard DFT calculations a
Externí odkaz:
https://doaj.org/article/d9efef651d3440309432aaf235d80f3a
Autor:
Jonathan Nilsson
Publikováno v:
Forum Mathematicum.
Let 𝔭 {\mathfrak{p}} be a parabolic subalgebra of 𝔰 𝔩 ( V ) {\mathfrak{sl}(V)} of maximal dimension and let 𝔫 ⊂ 𝔭 {\mathfrak{n}\subset\mathfrak{p}} be the corresponding nilradical. In this paper, we classify the set of 𝔰
Publikováno v:
Algebras and Representation Theory. 24:1141-1153
For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra $A$ of functions and the Lie algebra $\mathcal{V}$ of vector fields on the variety. We prove that a gauge module corr
Publikováno v:
Journal of Algebra. 502:146-162
A class of generalized Verma modules over sl n + 2 are constructed from sl n + 1 -modules which are U ( h n ) -free modules of rank 1. The necessary and sufficient conditions for these sl n + 2 -modules to be simple are determined. This leads to a cl
Publikováno v:
Frontiers in Chemistry
Frontiers in Chemistry, Vol 7 (2019)
Frontiers in Chemistry, Vol 7 (2019)
A model able to a priori predict ion conductivities of ionic liquids (ILs) is a desired design tool. We here propose a set of simple conductivity models for ILs composed of small ions by only using data easily derived from standard DFT calculations a
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For an irreducible affine variety $X$ over an algebraically closed field of characteristic zero we define two new classes of modules over the Lie algebra of vector fields on $X$ - gauge modules and Rudakov modules, which admit a compatible action of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0f565d51358c116349d27fe74adb499
Autor:
Jonathan Nilsson
Publikováno v:
Pacific Journal of Mathematics. 283:1-19
We construct a new family of simple gl2n-modules which depends on n2 generic parameters. Each module in the family is isomorphic to the regular U(gln )-module when restricted the gln -subalgebra naturally embedded into the top-left corner.
Autor:
Jonathan Nilsson
Publikováno v:
Jonathan Nilsson
Simple modules are the elemental components in representation theory for Lie algebras, and numerous mathematicians have worked on their construction and classification over the last century. This thesis consists of an introduction together with four
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::14ee30d127dce5b95a912246e58f4ece
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283061
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283061
Autor:
Yuly Billig, Jonathan Nilsson
For an affine algebraic variety X we study a category of modules that admit compatible actions of both the algebra A of functions on X and the Lie algebra of vector fields on X . In particular, for the case when X is the sphere S 2 , we construct a s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49d641f11307baecca269656bfc0f133
http://arxiv.org/abs/1705.06685
http://arxiv.org/abs/1705.06685
Publikováno v:
Agent-Mediated Knowledge Management ISBN: 9783540208686
AMKM
AMKM
The semantic web is becoming a realizable technology due to the efforts of researchers to develop semantic markup languages such as the DARPA Agent Markup Language (DAML). A major problem that faces the semantic web community is that most information
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12a277ee22635479ac86734ee26e1112
https://doi.org/10.1007/978-3-540-24612-1_19
https://doi.org/10.1007/978-3-540-24612-1_19