Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jonathan Louie"'
Autor:
Cassandra D'Amore, Julie C Reid, Matthew Chan, Samuel Fan, Amanda Huang, Jonathan Louie, Andy Tran, Stephanie Chauvin, Marla K Beauchamp
Publikováno v:
Journal of Medical Internet Research, Vol 24, Iss 10, p e36134 (2022)
BackgroundThis is a systematic review of randomized controlled trials and a meta-analysis comparing smart technology with face-to-face physical activity (PA) interventions in community-dwelling older adults (mean age 60 years). ObjectiveThis study a
Externí odkaz:
https://doaj.org/article/750d2de5d93b483d99fcac513cf75f55
Autor:
Cassandra D'Amore, Julie C Reid, Matthew Chan, Samuel Fan, Amanda Huang, Jonathan Louie, Andy Tran, Stephanie Chauvin, Marla K Beauchamp
BACKGROUND This is a systematic review of randomized controlled trials and a meta-analysis comparing smart-technology to face-to-face physical activity (PA) interventions, in community-dwelling older adults, mean age greater than or equal 60 years. O
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dbc1103318feec4204f4994e118f0fac
https://doi.org/10.2196/preprints.36134
https://doi.org/10.2196/preprints.36134
Autor:
Matthew T. V. Chan, Andy Tran, Marla K. Beauchamp, Samuel Fan, Stephanie Chauvin, Amanda Huang, Cassandra D'Amore, Julie C. Reid, Jonathan Louie
Publikováno v:
JBI evidence synthesis. 19(10)
OBJECTIVE The objective of this review is to determine the effect of physical activity interventions delivered via smart technology compared with face-to-face interventions for improving physical activity and physical function in older adults. INTROD
Autor:
Jonathan Louie
Publikováno v:
107th ACSA Annual Meeting Proceedings, Black Box.
Autor:
Jonathan Louie
Publikováno v:
107th ACSA Annual Meeting Proceedings, Black Box.
Autor:
Hao Ji, Sashi Thapaliya, Jonathan Louie, Ibraheem Saleh, Jose Figueroa-Hernandez, Liang Zhang
Publikováno v:
2017 International Conference on Computational Science and Computational Intelligence (CSCI).
In this paper, we investigate a complete system for identifying species from audio files. Audio data from both high quality and low quality sound files with varying degrees of background noise are collected and preprocessed for enhancing the learning