Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Jonathan K. George"'
Autor:
Haoyan Kang, Hao Wang, Jiachi Ye, Zibo Hu, Jonathan K. George, Volker J. Sorger, Maria Solyanik-Gorgone, Behrouz Movahhed Nouri
Publikováno v:
Nanomaterials, Vol 14, Iss 15, p 1262 (2024)
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product
Externí odkaz:
https://doaj.org/article/b03a4d66aefd495c87108249664ef7c2
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
Abstract Mirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimic
Externí odkaz:
https://doaj.org/article/ce865bbdcd094b12b89bb3d25781aeba
Publikováno v:
Advanced Photonics Research, Vol 2, Iss 2, Pp n/a-n/a (2021)
Digital‐to‐analog converters (DAC) are indispensable functional units in signal processing instrumentation and wide‐band telecommunication links for both civil and military applications. As photonic systems are capable of high data throughput a
Externí odkaz:
https://doaj.org/article/6d07ee223ad14d6f8ddd3c681a11eb28
Autor:
Haoyan Kang, Jonathan K. George, Behrouz Movahhed Nouri, Maria Solyanik-Gorgone, Hamed Dalir, Volker J. Sorger
Publikováno v:
AI and Optical Data Sciences IV.
Autor:
Ting Yu Teo, Xiaoxuan Ma, Ernest Pastor, Hao Wang, Jonathan K. George, Joel K. W. Yang, Simon Wall, Mario Miscuglio, Robert E. Simpson, Volker J. Sorger
Publikováno v:
Teo, T Y, Ma, X, Pastor, E, Wang, H, George, J K, Yang, J K W, Wall, S, Miscuglio, M, Simpson, R E & Sorger, V J 2022, ' Programmable chalcogenide-based all-optical deep neural networks ', Nanophotonics, vol. 11, no. 17, pp. 4073-4088 . https://doi.org/10.1515/nanoph-2022-0099
We demonstrate a passive all-chalcogenide all-optical perceptron scheme. The network’s nonlinear activation function (NLAF) relies on the nonlinear response of Ge2Sb2Te5 to femtosecond laser pulses. We measured the sub-picosecond time-resolved opti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd29ed09e11b215017c6a3301741897b
https://pure.au.dk/portal/da/publications/programmable-chalcogenidebased-alloptical-deep-neural-networks(8eb0e871-4fce-48e7-a7d1-58a2a58e7801).html
https://pure.au.dk/portal/da/publications/programmable-chalcogenidebased-alloptical-deep-neural-networks(8eb0e871-4fce-48e7-a7d1-58a2a58e7801).html
Autor:
Rishi Maiti, Volker J. Sorger, Rubab Amin, Xiaoxuan Ma, Hamed Dalir, Zhizhen Ma, Jonathan K. George, Mario Miscuglio
Publikováno v:
Journal of Lightwave Technology. 38:282-290
Here, we experimentally demonstrate an Indium Tin Oxide (ITO) Mach-Zehnder interferometer heterogeneously integrated in silicon photonics. The phase shifter section is realized in a novel lateral MOS configuration, which, due to favorable electrostat
Autor:
Nicola Peserico, Hangbo Yang, Xiaoxuan Ma, Shurui Li, Mostafa Hosseini, Jonathan K. George, Puneet Gupta, Chee Wei Wong, Volker J. Sorger
Publikováno v:
Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP).
We present our implementation of a Convolution Neural Network employing an Integrated Photonic Chip (PIC) to perform the high-speed optical FFT, showing the Silicon Photonic design, the initial optical response, and packaging.
Autor:
Nicola Peserico, Hangbo Yang, Xiaoxuan Ma, Shurui Li, Mostafa Hosseini, Jonathan K. George, Puneet Gupta, Chee Wei Wong, Volker J. Sorger
Publikováno v:
Optica Advanced Photonics Congress 2022.
We present our implementation of a 4F system integrated into a single Silicon Photonic chip to perform the high-speed Convolutional Neural Network by using optical on-chip FFT. We show the Silicon Photonic design, the initial optical response, and th
Autor:
Jonathan K. George, Volker J. Sorger
Publikováno v:
Frontiers in Optics + Laser Science 2022 (FIO, LS).
Compensating for chromatic dispersion in imaging systems is costly, often requiring multiple lenses. Here we explore post-processing correction for high chromatic dispersion using generative adversarial networks.
Autor:
Hangbo Yang, Shurui Li, Xiaoxuan Ma, Jonathan K. George, Puneet Gupta, Volker J. Sorger, Chee Wei Wong
Publikováno v:
Conference on Lasers and Electro-Optics.
We present a programmable on-chip photonic machine learning system based on the joint transform correlator. Testing the system on MNIST dataset shows 96.9% accuracy with even 10% signal delay.