Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jonathan Beardsley"'
Autor:
Jonathan Beardsley, Maximilien Péroux
We show that there is an equivalence in any $n$-topos $\mathcal{X}$ between the pointed and $k$-connective objects of $\mathcal{X}$ and the $\mathbb{E}_k$-group objects of the $(n-k-1)$-truncation of $\mathcal{X}$. This recovers, up to equivalence of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::436f15d4177b84124f9acd3c5dbfd2e1
Autor:
Liang Ze Wong, Jonathan Beardsley
We define and study opfibrations of $V$-enriched categories when $V$ is an extensive monoidal category whose unit is terminal and connected. This includes sets, simplicial sets, categories, or any locally cartesian closed category with disjoint copro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9db463576622304fc14f0a2a2f8807c1
http://arxiv.org/abs/1804.03829
http://arxiv.org/abs/1804.03829
Autor:
Jonathan Beardsley, Jack Morava
Recent work in higher algebra allows the reinterpretation of a classical description of the Eilenberg-MacLane spectrum $H\mathbb{Z}$ as a Thom spectrum, in terms of a kind of derived Galois theory. This essentially expository talk summarizes some of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c31cb972603f2a4182f25677d0261ae4
Autor:
Jonathan Beardsley
We show that the homotopy groups of a connective $E_k$-ring spectrum with an $E_k$-cell attached along a class $\alpha$ in degree $n$ are isomorphic to the homotopy groups of the cofiber of the self-map associated to $\alpha$ through degree $2n$. Usi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71fa21ad17c4ff0b0183ee5f7057b7fc
Autor:
Jonathan Beardsley
Publikováno v:
Algebr. Geom. Topol. 17, no. 2 (2017), 1151-1162
We show that a large number of Thom spectra, i.e. colimits of morphisms $BG\to BGL_1(\mathbb{S})$, can be obtained as iterated Thom spectra, i.e. colimits of morphisms $BG\to BGL_1(Mf)$ for some Thom spectrum $Mf$. This leads to a number of new relat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28a3791b95616833754a0532c828e885
https://projecteuclid.org/euclid.agt/1508431457
https://projecteuclid.org/euclid.agt/1508431457
Autor:
Piotr Mikusiński, Jonathan Beardsley
We show that Boehmians defined over open sets of $\mathbb{R}^N$ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over a topological space.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::162398ed4bdce4d940ab8182437d6ff0