Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Jonas Kazys Sunklodas"'
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lietuvos Matematikos Rinkinys, Vol 51, Iss proc. LMS (2010)
In the paper, we present the upper bound of Lp norms ∆p of the order (a1 + a2)/(DZ)-1/2 for all 1 0, i = 1, 2, the random variable X is distributed by the Poisson distribution with the parameter λ > 0, and the random variable Y by the standard gam
Externí odkaz:
https://doaj.org/article/921bcf03768547d78dd3561c09d070b0
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lietuvos Matematikos Rinkinys, Vol 50, Iss proc. LMS (2009)
In the paper, we present the upper bound of Lp norm \deltaλ,p of the order λ-δ/2 for all 1 \leq p \leq ∞, in the central limit theorem for a standardized random sum (SNλ - ESNλ)/DSNλ , where SNλ = X1 + ··· + XNλ is the random sum of inde
Externí odkaz:
https://doaj.org/article/18f56eea33f745979ff6cfeb8b44a36e
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lietuvos Matematikos Rinkinys, Vol 48, Iss proc. LMS (2008)
In the first part of the present paper, we estimate the difference \Delta n(1) = sup-∞ 0; the absolutely continuous r.v. ξ is uniformly distributed in the interval [-a, a]. The obtained upper bound of \Deltan(2) is C2-n, where C < 4.
Externí odkaz:
https://doaj.org/article/97976c4a12d6498daec519f462088381
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 62:218-238
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 60:410-423
We present upper bounds of the integral $$ {\int}_{-\infty}^{\infty }{\left|x\right|}^l\left|\mathrm{P}\left\{{Z}_N0\left({S}_N{X}_1+\dots +{X}_N\right) $$ of centered random variables X1,X2, . . . satisfying the uniformly strong mixing condition. Th
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 58:219-234
We present upper bounds for supx ∈ ℝ|P{Z N 0 (S N = X1 + ⋯ + X N ) of centered strongly mixing or uniformly strongly mixing random variables X1, X2, . . . . Here the number of summands N is a nonnegative integer-valued random variable independe
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 57:244-258
We present upper bounds of the integral $$ {\int}_{-\infty}^{\infty }{\left|x\right|}^l\left|\mathbf{P}\left\{{Z}_N 0 (S N = X 1 + · · · + X N ) of centered independent random variables X 1 ,X 2 , . . . . The number of summands N is a nonnegative
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 56:114-126
We present upper bounds of Ls norms (1 ≪ s ≪ ∞) of the normal approximation of random variables the characteristic functions of which satisfy some linear homogeneous differential equation. Note that this differential equation is satisfied, for
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 55:150-158
We present upper bounds of the L s norms of the normal approximation for random sums of independent identically distributed random variables X 1 ,X 2 , . . . with zero means and finite absolute moments of order 2 + δ, 0 < δ ≤ 1, where the number
Autor:
Jonas Kazys Sunklodas
Publikováno v:
Lithuanian Mathematical Journal. 54:356-365
We present upper bounds of the L s norms of the normal approximation for random sums of independent identically distributed random variables X 1 , X 2 , . . . with finite absolute moments of order 2 + δ, 0 < δ ≤ 1, where the number of summands N