Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Jonas Azzam"'
Autor:
Michele Villa, Jonas Azzam
Publikováno v:
Analysis & PDE. 14:1873-1904
We generalize some characterizations of uniformly rectifiable (UR) sets to sets whose Hausdorff content is lower regular (and in particular, do not need to be Ahlfors regular). For example, David and Semmes showed that, given an Ahlfors $d$-regular s
Autor:
Jonas Azzam
Publikováno v:
Revista Matemática Iberoamericana. 37:2161-2190
We show that any d-Ahlfors regular subset of Rn supporting a weak (1,d)-Poincare inequality with respect to surface measure is uniformly rectifiable.
Publikováno v:
International Mathematics Research Notices.
Let $\Omega \subset {{\mathbb {R}}}^{n+1}$, $n\geq 2$, be an open set with Ahlfors regular boundary that satisfies the corkscrew condition. We consider a uniformly elliptic operator $L$ in divergence form associated with a matrix $A$ with real, merel
Autor:
Jonas Azzam, Matthew Hyde
Publikováno v:
Annales Fennici Mathematici
We show that an Ahlfors $d$-regular set $E$ in $\mathbb{R}^{n}$ is uniformly rectifiable if the set of pairs $(x,r)\in E\times (0,\infty)$ for which there exists $y \in B(x,r)$ and $00$. To prove this, we generalize a result of Schul by proving, if $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02bc8ff9da68a66e678a8039e96d714f
http://wrap.warwick.ac.uk/166756/1/WRAP-weak-lower-density-condition-uniform-rectifiability-Hyde-2022.pdf
http://wrap.warwick.ac.uk/166756/1/WRAP-weak-lower-density-condition-uniform-rectifiability-Hyde-2022.pdf
Autor:
Jonas Azzam, Mihalis Mourgoglou
Publikováno v:
Anal. PDE 12, no. 8 (2019), 1891-1941
Tangent measure and blow-up methods are powerful tools for understanding the relationship between the infinitesimal structure of the boundary of a domain and the behavior of its harmonic measure. We introduce a method for studying tangent measures of
Autor:
Jonas Azzam
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Azzam, J 2018, ' Tangents, rectifiability, and corkscrew domains ', Publicacions Matemàtiques, vol. 62, no. 1, pp. 161-167 . < https://arxiv.org/abs/1505.03960 >
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 161-176
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 1 (2018), 161-176
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Azzam, J 2018, ' Tangents, rectifiability, and corkscrew domains ', Publicacions Matemàtiques, vol. 62, no. 1, pp. 161-167 . < https://arxiv.org/abs/1505.03960 >
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 161-176
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 62, no. 1 (2018), 161-176
In a recent paper, Cs\"ornyei and Wilson prove that curves in Euclidean space of $\sigma$-finite length have tangents on a set of positive $\mathscr{H}^{1}$-measure. They also show that a higher dimensional analogue of this result is not possible wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cd8cd064fe5c726c37d50090584af75
http://hdl.handle.net/2072/417219
http://hdl.handle.net/2072/417219
Publikováno v:
Azzam, J, Hofmann, S, Martell, J M, Mourgoglou, M & Tolsa, X 2020, ' Harmonic measure and quantitative connectivity: geometric characterization of the Lp-solvability of the Dirichlet problem ', Inventiones mathematicae, vol. 222, no. 3, pp. 881-993 . https://doi.org/10.1007/s00222-020-00984-5
Digital.CSIC. Repositorio Institucional del CSIC
instname
Digital.CSIC. Repositorio Institucional del CSIC
instname
It is well-known that quantitative, scale invariant absolute continuity(more precisely, the weak-A∞property) of harmonic measure with respect to sur-face measure, on the boundary of an open setΩ⊂Rn+1with Ahlfors-David regularboundary, is equiva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22398bf600191dc4ba70f7b406c0b9fa
http://hdl.handle.net/10261/228689
http://hdl.handle.net/10261/228689
Publikováno v:
Azzam, J, Li, S & Hickman, J 2018, ' Some remarks on the Lipschitz regularity of Radon transforms ', Proceedings of the american mathematical society, vol. 146, no. 10, pp. 4331-4337 . https://doi.org/10.1090/proc/14083
A set in the Euclidean plane is constructed whose image under the classical Radon transform is Lipschitz in every direction. It is also shown that, under mild hypotheses, for any such set the function which maps a direction to the corresponding Lipsc
Publikováno v:
Communications on Pure and Applied Mathematics. 70:2121-2163
We show that, for disjoint domains in the Euclidean space whose boundaries satisfy a non-degeneracy condition, mutual absolute continuity of their harmonic measures implies absolute continuity with respect to surface measure and rectifiability in the
Publikováno v:
Azzam, J, Mourgoglou, M, Tolsa, X & Volberg, A 2019, ' On a two-phase problem for harmonic measure in general domains ', American Journal of Mathematics, vol. 141, no. 5, pp. 1259-1279 . https://doi.org/10.1353/ajm.2019.0032
We show that, for disjoint domains in the Euclidean space, mutual absolute continuity of their harmonic measures implies absolute continuity with respect to surface measure and rectifiability in the intersection of their boundaries. This improves on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::452fcea25d5fe49c11884b3a65e8650e
https://hdl.handle.net/20.500.11820/57d747cb-a61f-4ff9-a173-05130200e34b
https://hdl.handle.net/20.500.11820/57d747cb-a61f-4ff9-a173-05130200e34b